This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
| symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
| symgfixf.d | |- D = ( N \ { K } ) |
||
| Assertion | symgfixels | |- ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) : D -1-1-onto-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
| 3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 4 | symgfixf.d | |- D = ( N \ { K } ) |
|
| 5 | 3 | eleq2i | |- ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
| 6 | 5 | a1i | |- ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) ) |
| 7 | resexg | |- ( F e. V -> ( F |` D ) e. _V ) |
|
| 8 | eqid | |- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
|
| 9 | eqid | |- ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 10 | 8 9 | elsymgbas2 | |- ( ( F |` D ) e. _V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) ) |
| 11 | 7 10 | syl | |- ( F e. V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) ) |
| 12 | eqidd | |- ( F e. V -> ( F |` D ) = ( F |` D ) ) |
|
| 13 | 4 | a1i | |- ( F e. V -> D = ( N \ { K } ) ) |
| 14 | 13 | eqcomd | |- ( F e. V -> ( N \ { K } ) = D ) |
| 15 | 12 14 14 | f1oeq123d | |- ( F e. V -> ( ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) <-> ( F |` D ) : D -1-1-onto-> D ) ) |
| 16 | 6 11 15 | 3bitrd | |- ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) : D -1-1-onto-> D ) ) |