This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subword is a word over the symbols it consists of. (Contributed by AV, 2-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdwrdsymb | |- ( S e. Word A -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdval2 | |- ( ( S e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S substr <. M , N >. ) = ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) |
|
| 2 | 1 | 3expb | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. M , N >. ) = ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) |
| 3 | wrdf | |- ( S e. Word A -> S : ( 0 ..^ ( # ` S ) ) --> A ) |
|
| 4 | 3 | ffund | |- ( S e. Word A -> Fun S ) |
| 5 | 4 | adantr | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> Fun S ) |
| 6 | 5 | adantr | |- ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> Fun S ) |
| 7 | wrddm | |- ( S e. Word A -> dom S = ( 0 ..^ ( # ` S ) ) ) |
|
| 8 | elfzodifsumelfzo | |- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) -> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) ) |
|
| 9 | 8 | imp | |- ( ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) |
| 10 | 9 | adantl | |- ( ( dom S = ( 0 ..^ ( # ` S ) ) /\ ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) ) -> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) |
| 11 | eleq2 | |- ( dom S = ( 0 ..^ ( # ` S ) ) -> ( ( x + M ) e. dom S <-> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) ) |
|
| 12 | 11 | adantr | |- ( ( dom S = ( 0 ..^ ( # ` S ) ) /\ ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) ) -> ( ( x + M ) e. dom S <-> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) ) |
| 13 | 10 12 | mpbird | |- ( ( dom S = ( 0 ..^ ( # ` S ) ) /\ ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) ) -> ( x + M ) e. dom S ) |
| 14 | 13 | exp32 | |- ( dom S = ( 0 ..^ ( # ` S ) ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) -> ( x + M ) e. dom S ) ) ) |
| 15 | 7 14 | syl | |- ( S e. Word A -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) -> ( x + M ) e. dom S ) ) ) |
| 16 | 15 | imp31 | |- ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( x + M ) e. dom S ) |
| 17 | simpr | |- ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> x e. ( 0 ..^ ( N - M ) ) ) |
|
| 18 | elfzelz | |- ( N e. ( 0 ... ( # ` S ) ) -> N e. ZZ ) |
|
| 19 | 18 | adantl | |- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> N e. ZZ ) |
| 20 | 19 | adantl | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> N e. ZZ ) |
| 21 | 20 | adantr | |- ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> N e. ZZ ) |
| 22 | elfzelz | |- ( M e. ( 0 ... N ) -> M e. ZZ ) |
|
| 23 | 22 | ad2antrl | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> M e. ZZ ) |
| 24 | 23 | adantr | |- ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> M e. ZZ ) |
| 25 | fzoaddel2 | |- ( ( x e. ( 0 ..^ ( N - M ) ) /\ N e. ZZ /\ M e. ZZ ) -> ( x + M ) e. ( M ..^ N ) ) |
|
| 26 | 17 21 24 25 | syl3anc | |- ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( x + M ) e. ( M ..^ N ) ) |
| 27 | funfvima | |- ( ( Fun S /\ ( x + M ) e. dom S ) -> ( ( x + M ) e. ( M ..^ N ) -> ( S ` ( x + M ) ) e. ( S " ( M ..^ N ) ) ) ) |
|
| 28 | 27 | imp | |- ( ( ( Fun S /\ ( x + M ) e. dom S ) /\ ( x + M ) e. ( M ..^ N ) ) -> ( S ` ( x + M ) ) e. ( S " ( M ..^ N ) ) ) |
| 29 | 6 16 26 28 | syl21anc | |- ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( S ` ( x + M ) ) e. ( S " ( M ..^ N ) ) ) |
| 30 | 29 | fmpttd | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( N - M ) ) --> ( S " ( M ..^ N ) ) ) |
| 31 | fvex | |- ( S ` ( x + M ) ) e. _V |
|
| 32 | eqid | |- ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) = ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) |
|
| 33 | 31 32 | fnmpti | |- ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) Fn ( 0 ..^ ( N - M ) ) |
| 34 | hashfn | |- ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) Fn ( 0 ..^ ( N - M ) ) -> ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) = ( # ` ( 0 ..^ ( N - M ) ) ) ) |
|
| 35 | 33 34 | mp1i | |- ( M e. ( 0 ... N ) -> ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) = ( # ` ( 0 ..^ ( N - M ) ) ) ) |
| 36 | fznn0sub | |- ( M e. ( 0 ... N ) -> ( N - M ) e. NN0 ) |
|
| 37 | hashfzo0 | |- ( ( N - M ) e. NN0 -> ( # ` ( 0 ..^ ( N - M ) ) ) = ( N - M ) ) |
|
| 38 | 36 37 | syl | |- ( M e. ( 0 ... N ) -> ( # ` ( 0 ..^ ( N - M ) ) ) = ( N - M ) ) |
| 39 | 35 38 | eqtrd | |- ( M e. ( 0 ... N ) -> ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) = ( N - M ) ) |
| 40 | 39 | oveq2d | |- ( M e. ( 0 ... N ) -> ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) = ( 0 ..^ ( N - M ) ) ) |
| 41 | 40 | feq2d | |- ( M e. ( 0 ... N ) -> ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) <-> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( N - M ) ) --> ( S " ( M ..^ N ) ) ) ) |
| 42 | 41 | ad2antrl | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) <-> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( N - M ) ) --> ( S " ( M ..^ N ) ) ) ) |
| 43 | 30 42 | mpbird | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) ) |
| 44 | iswrdb | |- ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) e. Word ( S " ( M ..^ N ) ) <-> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) ) |
|
| 45 | 43 44 | sylibr | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) e. Word ( S " ( M ..^ N ) ) ) |
| 46 | 2 45 | eqeltrd | |- ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) |
| 47 | 46 | expcom | |- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S e. Word A -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) ) |
| 48 | swrdnd0 | |- ( S e. Word A -> ( -. ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S substr <. M , N >. ) = (/) ) ) |
|
| 49 | wrd0 | |- (/) e. Word ( S " ( M ..^ N ) ) |
|
| 50 | eleq1 | |- ( ( S substr <. M , N >. ) = (/) -> ( ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) <-> (/) e. Word ( S " ( M ..^ N ) ) ) ) |
|
| 51 | 49 50 | mpbiri | |- ( ( S substr <. M , N >. ) = (/) -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) |
| 52 | 48 51 | syl6com | |- ( -. ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S e. Word A -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) ) |
| 53 | 47 52 | pm2.61i | |- ( S e. Word A -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) |