This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoaddel2 | |- ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( A + C ) e. ( C ..^ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoaddel | |- ( ( A e. ( 0 ..^ ( B - C ) ) /\ C e. ZZ ) -> ( A + C ) e. ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( A + C ) e. ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) ) |
| 3 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 4 | zcn | |- ( C e. ZZ -> C e. CC ) |
|
| 5 | addlid | |- ( C e. CC -> ( 0 + C ) = C ) |
|
| 6 | 5 | adantl | |- ( ( B e. CC /\ C e. CC ) -> ( 0 + C ) = C ) |
| 7 | npcan | |- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
|
| 8 | 6 7 | oveq12d | |- ( ( B e. CC /\ C e. CC ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) ) |
| 9 | 3 4 8 | syl2an | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) ) |
| 10 | 9 | 3adant1 | |- ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) ) |
| 11 | 2 10 | eleqtrd | |- ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( A + C ) e. ( C ..^ B ) ) |