This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqs1 | |- ( ( W e. Word A /\ ( # ` W ) = 1 ) -> W = <" ( W ` 0 ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( # ` W ) = 1 -> ( # ` W ) = 1 ) |
|
| 2 | s1len | |- ( # ` <" ( W ` 0 ) "> ) = 1 |
|
| 3 | 1 2 | eqtr4di | |- ( ( # ` W ) = 1 -> ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) ) |
| 4 | fvex | |- ( W ` 0 ) e. _V |
|
| 5 | s1fv | |- ( ( W ` 0 ) e. _V -> ( <" ( W ` 0 ) "> ` 0 ) = ( W ` 0 ) ) |
|
| 6 | 4 5 | ax-mp | |- ( <" ( W ` 0 ) "> ` 0 ) = ( W ` 0 ) |
| 7 | 6 | eqcomi | |- ( W ` 0 ) = ( <" ( W ` 0 ) "> ` 0 ) |
| 8 | c0ex | |- 0 e. _V |
|
| 9 | fveq2 | |- ( x = 0 -> ( W ` x ) = ( W ` 0 ) ) |
|
| 10 | fveq2 | |- ( x = 0 -> ( <" ( W ` 0 ) "> ` x ) = ( <" ( W ` 0 ) "> ` 0 ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = 0 -> ( ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) <-> ( W ` 0 ) = ( <" ( W ` 0 ) "> ` 0 ) ) ) |
| 12 | 8 11 | ralsn | |- ( A. x e. { 0 } ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) <-> ( W ` 0 ) = ( <" ( W ` 0 ) "> ` 0 ) ) |
| 13 | 7 12 | mpbir | |- A. x e. { 0 } ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) |
| 14 | oveq2 | |- ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 1 ) ) |
|
| 15 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 16 | 14 15 | eqtrdi | |- ( ( # ` W ) = 1 -> ( 0 ..^ ( # ` W ) ) = { 0 } ) |
| 17 | 16 | raleqdv | |- ( ( # ` W ) = 1 -> ( A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) <-> A. x e. { 0 } ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) |
| 18 | 13 17 | mpbiri | |- ( ( # ` W ) = 1 -> A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) |
| 19 | 3 18 | jca | |- ( ( # ` W ) = 1 -> ( ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) /\ A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) |
| 20 | s1cli | |- <" ( W ` 0 ) "> e. Word _V |
|
| 21 | eqwrd | |- ( ( W e. Word A /\ <" ( W ` 0 ) "> e. Word _V ) -> ( W = <" ( W ` 0 ) "> <-> ( ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) /\ A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) ) |
|
| 22 | 20 21 | mpan2 | |- ( W e. Word A -> ( W = <" ( W ` 0 ) "> <-> ( ( # ` W ) = ( # ` <" ( W ` 0 ) "> ) /\ A. x e. ( 0 ..^ ( # ` W ) ) ( W ` x ) = ( <" ( W ` 0 ) "> ` x ) ) ) ) |
| 23 | 19 22 | imbitrrid | |- ( W e. Word A -> ( ( # ` W ) = 1 -> W = <" ( W ` 0 ) "> ) ) |
| 24 | 23 | imp | |- ( ( W e. Word A /\ ( # ` W ) = 1 ) -> W = <" ( W ` 0 ) "> ) |