This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018) (Revised by AV, 20-Oct-2018) (Proof shortened by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrd0 | |- ( (/) substr <. F , L >. ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | |- ( <. (/) , <. F , L >. >. e. ( _V X. ( ZZ X. ZZ ) ) <-> ( (/) e. _V /\ <. F , L >. e. ( ZZ X. ZZ ) ) ) |
|
| 2 | opelxp | |- ( <. F , L >. e. ( ZZ X. ZZ ) <-> ( F e. ZZ /\ L e. ZZ ) ) |
|
| 3 | swrdval | |- ( ( (/) e. _V /\ F e. ZZ /\ L e. ZZ ) -> ( (/) substr <. F , L >. ) = if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) ) |
|
| 4 | fzonlt0 | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( -. F < L <-> ( F ..^ L ) = (/) ) ) |
|
| 5 | 4 | biimprd | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( ( F ..^ L ) = (/) -> -. F < L ) ) |
| 6 | 5 | con2d | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( F < L -> -. ( F ..^ L ) = (/) ) ) |
| 7 | 6 | impcom | |- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) = (/) ) |
| 8 | ss0 | |- ( ( F ..^ L ) C_ (/) -> ( F ..^ L ) = (/) ) |
|
| 9 | 7 8 | nsyl | |- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) C_ (/) ) |
| 10 | dm0 | |- dom (/) = (/) |
|
| 11 | 10 | a1i | |- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom (/) = (/) ) |
| 12 | 11 | sseq2d | |- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( ( F ..^ L ) C_ dom (/) <-> ( F ..^ L ) C_ (/) ) ) |
| 13 | 9 12 | mtbird | |- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) C_ dom (/) ) |
| 14 | 13 | iffalsed | |- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
| 15 | ssidd | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> (/) C_ (/) ) |
|
| 16 | 4 | biimpac | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( F ..^ L ) = (/) ) |
| 17 | 10 | a1i | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom (/) = (/) ) |
| 18 | 15 16 17 | 3sstr4d | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( F ..^ L ) C_ dom (/) ) |
| 19 | 18 | iftrued | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) ) |
| 20 | zre | |- ( L e. ZZ -> L e. RR ) |
|
| 21 | zre | |- ( F e. ZZ -> F e. RR ) |
|
| 22 | lenlt | |- ( ( L e. RR /\ F e. RR ) -> ( L <_ F <-> -. F < L ) ) |
|
| 23 | 22 | bicomd | |- ( ( L e. RR /\ F e. RR ) -> ( -. F < L <-> L <_ F ) ) |
| 24 | 20 21 23 | syl2anr | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( -. F < L <-> L <_ F ) ) |
| 25 | fzo0n | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( L <_ F <-> ( 0 ..^ ( L - F ) ) = (/) ) ) |
|
| 26 | 24 25 | bitrd | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( -. F < L <-> ( 0 ..^ ( L - F ) ) = (/) ) ) |
| 27 | 26 | biimpac | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( 0 ..^ ( L - F ) ) = (/) ) |
| 28 | 27 | mpteq1d | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = ( x e. (/) |-> ( (/) ` ( x + F ) ) ) ) |
| 29 | 28 | dmeqd | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = dom ( x e. (/) |-> ( (/) ` ( x + F ) ) ) ) |
| 30 | ral0 | |- A. x e. (/) ( (/) ` ( x + F ) ) e. _V |
|
| 31 | dmmptg | |- ( A. x e. (/) ( (/) ` ( x + F ) ) e. _V -> dom ( x e. (/) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
|
| 32 | 30 31 | mp1i | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom ( x e. (/) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
| 33 | 29 32 | eqtrd | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
| 34 | mptrel | |- Rel ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) |
|
| 35 | reldm0 | |- ( Rel ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) -> ( ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) <-> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) ) |
|
| 36 | 34 35 | mp1i | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) <-> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) ) |
| 37 | 33 36 | mpbird | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
| 38 | 19 37 | eqtrd | |- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
| 39 | 14 38 | pm2.61ian | |- ( ( F e. ZZ /\ L e. ZZ ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
| 40 | 39 | 3adant1 | |- ( ( (/) e. _V /\ F e. ZZ /\ L e. ZZ ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
| 41 | 3 40 | eqtrd | |- ( ( (/) e. _V /\ F e. ZZ /\ L e. ZZ ) -> ( (/) substr <. F , L >. ) = (/) ) |
| 42 | 41 | 3expb | |- ( ( (/) e. _V /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( (/) substr <. F , L >. ) = (/) ) |
| 43 | 2 42 | sylan2b | |- ( ( (/) e. _V /\ <. F , L >. e. ( ZZ X. ZZ ) ) -> ( (/) substr <. F , L >. ) = (/) ) |
| 44 | 1 43 | sylbi | |- ( <. (/) , <. F , L >. >. e. ( _V X. ( ZZ X. ZZ ) ) -> ( (/) substr <. F , L >. ) = (/) ) |
| 45 | df-substr | |- substr = ( s e. _V , b e. ( ZZ X. ZZ ) |-> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( z e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( z + ( 1st ` b ) ) ) ) , (/) ) ) |
|
| 46 | ovex | |- ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) e. _V |
|
| 47 | 46 | mptex | |- ( z e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( z + ( 1st ` b ) ) ) ) e. _V |
| 48 | 0ex | |- (/) e. _V |
|
| 49 | 47 48 | ifex | |- if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( z e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( z + ( 1st ` b ) ) ) ) , (/) ) e. _V |
| 50 | 45 49 | dmmpo | |- dom substr = ( _V X. ( ZZ X. ZZ ) ) |
| 51 | 44 50 | eleq2s | |- ( <. (/) , <. F , L >. >. e. dom substr -> ( (/) substr <. F , L >. ) = (/) ) |
| 52 | df-ov | |- ( (/) substr <. F , L >. ) = ( substr ` <. (/) , <. F , L >. >. ) |
|
| 53 | ndmfv | |- ( -. <. (/) , <. F , L >. >. e. dom substr -> ( substr ` <. (/) , <. F , L >. >. ) = (/) ) |
|
| 54 | 52 53 | eqtrid | |- ( -. <. (/) , <. F , L >. >. e. dom substr -> ( (/) substr <. F , L >. ) = (/) ) |
| 55 | 51 54 | pm2.61i | |- ( (/) substr <. F , L >. ) = (/) |