This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdval | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> ( S substr <. F , L >. ) = if ( ( F ..^ L ) C_ dom S , ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) , (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-substr | |- substr = ( s e. _V , b e. ( ZZ X. ZZ ) |-> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) , (/) ) ) |
|
| 2 | 1 | a1i | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> substr = ( s e. _V , b e. ( ZZ X. ZZ ) |-> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) , (/) ) ) ) |
| 3 | simprl | |- ( ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) /\ ( s = S /\ b = <. F , L >. ) ) -> s = S ) |
|
| 4 | fveq2 | |- ( b = <. F , L >. -> ( 1st ` b ) = ( 1st ` <. F , L >. ) ) |
|
| 5 | 4 | adantl | |- ( ( s = S /\ b = <. F , L >. ) -> ( 1st ` b ) = ( 1st ` <. F , L >. ) ) |
| 6 | op1stg | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( 1st ` <. F , L >. ) = F ) |
|
| 7 | 6 | 3adant1 | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> ( 1st ` <. F , L >. ) = F ) |
| 8 | 5 7 | sylan9eqr | |- ( ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) /\ ( s = S /\ b = <. F , L >. ) ) -> ( 1st ` b ) = F ) |
| 9 | fveq2 | |- ( b = <. F , L >. -> ( 2nd ` b ) = ( 2nd ` <. F , L >. ) ) |
|
| 10 | 9 | adantl | |- ( ( s = S /\ b = <. F , L >. ) -> ( 2nd ` b ) = ( 2nd ` <. F , L >. ) ) |
| 11 | op2ndg | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( 2nd ` <. F , L >. ) = L ) |
|
| 12 | 11 | 3adant1 | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> ( 2nd ` <. F , L >. ) = L ) |
| 13 | 10 12 | sylan9eqr | |- ( ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) /\ ( s = S /\ b = <. F , L >. ) ) -> ( 2nd ` b ) = L ) |
| 14 | simp2 | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( 1st ` b ) = F ) |
|
| 15 | simp3 | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( 2nd ` b ) = L ) |
|
| 16 | 14 15 | oveq12d | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( ( 1st ` b ) ..^ ( 2nd ` b ) ) = ( F ..^ L ) ) |
| 17 | simp1 | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> s = S ) |
|
| 18 | 17 | dmeqd | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> dom s = dom S ) |
| 19 | 16 18 | sseq12d | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s <-> ( F ..^ L ) C_ dom S ) ) |
| 20 | 15 14 | oveq12d | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( ( 2nd ` b ) - ( 1st ` b ) ) = ( L - F ) ) |
| 21 | 20 | oveq2d | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) = ( 0 ..^ ( L - F ) ) ) |
| 22 | 14 | oveq2d | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( x + ( 1st ` b ) ) = ( x + F ) ) |
| 23 | 17 22 | fveq12d | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( s ` ( x + ( 1st ` b ) ) ) = ( S ` ( x + F ) ) ) |
| 24 | 21 23 | mpteq12dv | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) = ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) ) |
| 25 | 19 24 | ifbieq1d | |- ( ( s = S /\ ( 1st ` b ) = F /\ ( 2nd ` b ) = L ) -> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) , (/) ) = if ( ( F ..^ L ) C_ dom S , ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) , (/) ) ) |
| 26 | 3 8 13 25 | syl3anc | |- ( ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) /\ ( s = S /\ b = <. F , L >. ) ) -> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) , (/) ) = if ( ( F ..^ L ) C_ dom S , ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) , (/) ) ) |
| 27 | elex | |- ( S e. V -> S e. _V ) |
|
| 28 | 27 | 3ad2ant1 | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> S e. _V ) |
| 29 | opelxpi | |- ( ( F e. ZZ /\ L e. ZZ ) -> <. F , L >. e. ( ZZ X. ZZ ) ) |
|
| 30 | 29 | 3adant1 | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> <. F , L >. e. ( ZZ X. ZZ ) ) |
| 31 | ovex | |- ( 0 ..^ ( L - F ) ) e. _V |
|
| 32 | 31 | mptex | |- ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) e. _V |
| 33 | 0ex | |- (/) e. _V |
|
| 34 | 32 33 | ifex | |- if ( ( F ..^ L ) C_ dom S , ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) , (/) ) e. _V |
| 35 | 34 | a1i | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> if ( ( F ..^ L ) C_ dom S , ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) , (/) ) e. _V ) |
| 36 | 2 26 28 30 35 | ovmpod | |- ( ( S e. V /\ F e. ZZ /\ L e. ZZ ) -> ( S substr <. F , L >. ) = if ( ( F ..^ L ) C_ dom S , ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) , (/) ) ) |