This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Length of a right-anchored subword. (Contributed by Alexander van der Vekens, 5-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdrlen | |- ( ( W e. Word V /\ I e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( # ` W ) >. ) ) = ( ( # ` W ) - I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 2 | nn0fz0 | |- ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
|
| 3 | 1 2 | sylib | |- ( W e. Word V -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
| 4 | 3 | adantr | |- ( ( W e. Word V /\ I e. ( 0 ... ( # ` W ) ) ) -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
| 5 | swrdlen | |- ( ( W e. Word V /\ I e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( # ` W ) >. ) ) = ( ( # ` W ) - I ) ) |
|
| 6 | 4 5 | mpd3an3 | |- ( ( W e. Word V /\ I e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( # ` W ) >. ) ) = ( ( # ` W ) - I ) ) |