This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006) (Revised by Mario Carneiro, 21-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxr | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ ( A. x e. A -. B < x /\ A. x e. RR ( x < B -> E. y e. A x < y ) ) ) -> sup ( A , RR* , < ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ ( A. x e. A -. B < x /\ A. x e. RR ( x < B -> E. y e. A x < y ) ) ) -> B e. RR* ) |
|
| 2 | simprl | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ ( A. x e. A -. B < x /\ A. x e. RR ( x < B -> E. y e. A x < y ) ) ) -> A. x e. A -. B < x ) |
|
| 3 | xrub | |- ( ( A C_ RR* /\ B e. RR* ) -> ( A. x e. RR ( x < B -> E. y e. A x < y ) <-> A. x e. RR* ( x < B -> E. y e. A x < y ) ) ) |
|
| 4 | 3 | biimpa | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ A. x e. RR ( x < B -> E. y e. A x < y ) ) -> A. x e. RR* ( x < B -> E. y e. A x < y ) ) |
| 5 | 4 | adantrl | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ ( A. x e. A -. B < x /\ A. x e. RR ( x < B -> E. y e. A x < y ) ) ) -> A. x e. RR* ( x < B -> E. y e. A x < y ) ) |
| 6 | xrltso | |- < Or RR* |
|
| 7 | 6 | a1i | |- ( T. -> < Or RR* ) |
| 8 | 7 | eqsup | |- ( T. -> ( ( B e. RR* /\ A. x e. A -. B < x /\ A. x e. RR* ( x < B -> E. y e. A x < y ) ) -> sup ( A , RR* , < ) = B ) ) |
| 9 | 8 | mptru | |- ( ( B e. RR* /\ A. x e. A -. B < x /\ A. x e. RR* ( x < B -> E. y e. A x < y ) ) -> sup ( A , RR* , < ) = B ) |
| 10 | 1 2 5 9 | syl3anc | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ ( A. x e. A -. B < x /\ A. x e. RR ( x < B -> E. y e. A x < y ) ) ) -> sup ( A , RR* , < ) = B ) |