This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrunb2 | |- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y <-> sup ( A , RR* , < ) = +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ RR* -> ( z e. A -> z e. RR* ) ) |
|
| 2 | pnfnlt | |- ( z e. RR* -> -. +oo < z ) |
|
| 3 | 1 2 | syl6 | |- ( A C_ RR* -> ( z e. A -> -. +oo < z ) ) |
| 4 | 3 | ralrimiv | |- ( A C_ RR* -> A. z e. A -. +oo < z ) |
| 5 | 4 | adantr | |- ( ( A C_ RR* /\ A. x e. RR E. y e. A x < y ) -> A. z e. A -. +oo < z ) |
| 6 | breq1 | |- ( x = z -> ( x < y <-> z < y ) ) |
|
| 7 | 6 | rexbidv | |- ( x = z -> ( E. y e. A x < y <-> E. y e. A z < y ) ) |
| 8 | 7 | rspcva | |- ( ( z e. RR /\ A. x e. RR E. y e. A x < y ) -> E. y e. A z < y ) |
| 9 | 8 | adantrr | |- ( ( z e. RR /\ ( A. x e. RR E. y e. A x < y /\ A C_ RR* ) ) -> E. y e. A z < y ) |
| 10 | 9 | ancoms | |- ( ( ( A. x e. RR E. y e. A x < y /\ A C_ RR* ) /\ z e. RR ) -> E. y e. A z < y ) |
| 11 | 10 | exp31 | |- ( A. x e. RR E. y e. A x < y -> ( A C_ RR* -> ( z e. RR -> E. y e. A z < y ) ) ) |
| 12 | 11 | a1dd | |- ( A. x e. RR E. y e. A x < y -> ( A C_ RR* -> ( z < +oo -> ( z e. RR -> E. y e. A z < y ) ) ) ) |
| 13 | 12 | com4r | |- ( z e. RR -> ( A. x e. RR E. y e. A x < y -> ( A C_ RR* -> ( z < +oo -> E. y e. A z < y ) ) ) ) |
| 14 | 13 | com13 | |- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y -> ( z e. RR -> ( z < +oo -> E. y e. A z < y ) ) ) ) |
| 15 | 14 | imp | |- ( ( A C_ RR* /\ A. x e. RR E. y e. A x < y ) -> ( z e. RR -> ( z < +oo -> E. y e. A z < y ) ) ) |
| 16 | 15 | ralrimiv | |- ( ( A C_ RR* /\ A. x e. RR E. y e. A x < y ) -> A. z e. RR ( z < +oo -> E. y e. A z < y ) ) |
| 17 | 5 16 | jca | |- ( ( A C_ RR* /\ A. x e. RR E. y e. A x < y ) -> ( A. z e. A -. +oo < z /\ A. z e. RR ( z < +oo -> E. y e. A z < y ) ) ) |
| 18 | pnfxr | |- +oo e. RR* |
|
| 19 | supxr | |- ( ( ( A C_ RR* /\ +oo e. RR* ) /\ ( A. z e. A -. +oo < z /\ A. z e. RR ( z < +oo -> E. y e. A z < y ) ) ) -> sup ( A , RR* , < ) = +oo ) |
|
| 20 | 18 19 | mpanl2 | |- ( ( A C_ RR* /\ ( A. z e. A -. +oo < z /\ A. z e. RR ( z < +oo -> E. y e. A z < y ) ) ) -> sup ( A , RR* , < ) = +oo ) |
| 21 | 17 20 | syldan | |- ( ( A C_ RR* /\ A. x e. RR E. y e. A x < y ) -> sup ( A , RR* , < ) = +oo ) |
| 22 | 21 | ex | |- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y -> sup ( A , RR* , < ) = +oo ) ) |
| 23 | rexr | |- ( x e. RR -> x e. RR* ) |
|
| 24 | 23 | ad2antlr | |- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> x e. RR* ) |
| 25 | ltpnf | |- ( x e. RR -> x < +oo ) |
|
| 26 | breq2 | |- ( sup ( A , RR* , < ) = +oo -> ( x < sup ( A , RR* , < ) <-> x < +oo ) ) |
|
| 27 | 25 26 | imbitrrid | |- ( sup ( A , RR* , < ) = +oo -> ( x e. RR -> x < sup ( A , RR* , < ) ) ) |
| 28 | 27 | impcom | |- ( ( x e. RR /\ sup ( A , RR* , < ) = +oo ) -> x < sup ( A , RR* , < ) ) |
| 29 | 28 | adantll | |- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> x < sup ( A , RR* , < ) ) |
| 30 | xrltso | |- < Or RR* |
|
| 31 | 30 | a1i | |- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> < Or RR* ) |
| 32 | xrsupss | |- ( A C_ RR* -> E. z e. RR* ( A. w e. A -. z < w /\ A. w e. RR* ( w < z -> E. y e. A w < y ) ) ) |
|
| 33 | 32 | ad2antrr | |- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> E. z e. RR* ( A. w e. A -. z < w /\ A. w e. RR* ( w < z -> E. y e. A w < y ) ) ) |
| 34 | 31 33 | suplub | |- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> ( ( x e. RR* /\ x < sup ( A , RR* , < ) ) -> E. y e. A x < y ) ) |
| 35 | 24 29 34 | mp2and | |- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> E. y e. A x < y ) |
| 36 | 35 | exp31 | |- ( A C_ RR* -> ( x e. RR -> ( sup ( A , RR* , < ) = +oo -> E. y e. A x < y ) ) ) |
| 37 | 36 | com23 | |- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo -> ( x e. RR -> E. y e. A x < y ) ) ) |
| 38 | 37 | ralrimdv | |- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo -> A. x e. RR E. y e. A x < y ) ) |
| 39 | 22 38 | impbid | |- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y <-> sup ( A , RR* , < ) = +oo ) ) |