This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | suppsnop.f | |- F = { <. X , Y >. } |
|
| Assertion | suppsnop | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( F supp Z ) = if ( Y = Z , (/) , { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppsnop.f | |- F = { <. X , Y >. } |
|
| 2 | f1osng | |- ( ( X e. V /\ Y e. W ) -> { <. X , Y >. } : { X } -1-1-onto-> { Y } ) |
|
| 3 | f1of | |- ( { <. X , Y >. } : { X } -1-1-onto-> { Y } -> { <. X , Y >. } : { X } --> { Y } ) |
|
| 4 | 2 3 | syl | |- ( ( X e. V /\ Y e. W ) -> { <. X , Y >. } : { X } --> { Y } ) |
| 5 | 4 | 3adant3 | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> { <. X , Y >. } : { X } --> { Y } ) |
| 6 | 1 | feq1i | |- ( F : { X } --> { Y } <-> { <. X , Y >. } : { X } --> { Y } ) |
| 7 | 5 6 | sylibr | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> F : { X } --> { Y } ) |
| 8 | snex | |- { X } e. _V |
|
| 9 | fex | |- ( ( F : { X } --> { Y } /\ { X } e. _V ) -> F e. _V ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> F e. _V ) |
| 11 | simp3 | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> Z e. U ) |
|
| 12 | suppval | |- ( ( F e. _V /\ Z e. U ) -> ( F supp Z ) = { x e. dom F | ( F " { x } ) =/= { Z } } ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( F supp Z ) = { x e. dom F | ( F " { x } ) =/= { Z } } ) |
| 14 | 7 | fdmd | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> dom F = { X } ) |
| 15 | 14 | rabeqdv | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> { x e. dom F | ( F " { x } ) =/= { Z } } = { x e. { X } | ( F " { x } ) =/= { Z } } ) |
| 16 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 17 | 16 | imaeq2d | |- ( x = X -> ( F " { x } ) = ( F " { X } ) ) |
| 18 | 17 | neeq1d | |- ( x = X -> ( ( F " { x } ) =/= { Z } <-> ( F " { X } ) =/= { Z } ) ) |
| 19 | 18 | rabsnif | |- { x e. { X } | ( F " { x } ) =/= { Z } } = if ( ( F " { X } ) =/= { Z } , { X } , (/) ) |
| 20 | 15 19 | eqtrdi | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> { x e. dom F | ( F " { x } ) =/= { Z } } = if ( ( F " { X } ) =/= { Z } , { X } , (/) ) ) |
| 21 | 7 | ffnd | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> F Fn { X } ) |
| 22 | snidg | |- ( X e. V -> X e. { X } ) |
|
| 23 | 22 | 3ad2ant1 | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> X e. { X } ) |
| 24 | fnsnfv | |- ( ( F Fn { X } /\ X e. { X } ) -> { ( F ` X ) } = ( F " { X } ) ) |
|
| 25 | 24 | eqcomd | |- ( ( F Fn { X } /\ X e. { X } ) -> ( F " { X } ) = { ( F ` X ) } ) |
| 26 | 21 23 25 | syl2anc | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( F " { X } ) = { ( F ` X ) } ) |
| 27 | 26 | neeq1d | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( ( F " { X } ) =/= { Z } <-> { ( F ` X ) } =/= { Z } ) ) |
| 28 | 1 | fveq1i | |- ( F ` X ) = ( { <. X , Y >. } ` X ) |
| 29 | fvsng | |- ( ( X e. V /\ Y e. W ) -> ( { <. X , Y >. } ` X ) = Y ) |
|
| 30 | 29 | 3adant3 | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( { <. X , Y >. } ` X ) = Y ) |
| 31 | 28 30 | eqtrid | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( F ` X ) = Y ) |
| 32 | 31 | sneqd | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> { ( F ` X ) } = { Y } ) |
| 33 | 32 | neeq1d | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( { ( F ` X ) } =/= { Z } <-> { Y } =/= { Z } ) ) |
| 34 | sneqbg | |- ( Y e. W -> ( { Y } = { Z } <-> Y = Z ) ) |
|
| 35 | 34 | 3ad2ant2 | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( { Y } = { Z } <-> Y = Z ) ) |
| 36 | 35 | necon3abid | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( { Y } =/= { Z } <-> -. Y = Z ) ) |
| 37 | 27 33 36 | 3bitrd | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( ( F " { X } ) =/= { Z } <-> -. Y = Z ) ) |
| 38 | 37 | ifbid | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> if ( ( F " { X } ) =/= { Z } , { X } , (/) ) = if ( -. Y = Z , { X } , (/) ) ) |
| 39 | ifnot | |- if ( -. Y = Z , { X } , (/) ) = if ( Y = Z , (/) , { X } ) |
|
| 40 | 38 39 | eqtrdi | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> if ( ( F " { X } ) =/= { Z } , { X } , (/) ) = if ( Y = Z , (/) , { X } ) ) |
| 41 | 13 20 40 | 3eqtrd | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( F supp Z ) = if ( Y = Z , (/) , { X } ) ) |