This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019) (Revised by AV, 6-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppval | |- ( ( X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X " { i } ) =/= { Z } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-supp | |- supp = ( x e. _V , z e. _V |-> { i e. dom x | ( x " { i } ) =/= { z } } ) |
|
| 2 | 1 | a1i | |- ( ( X e. V /\ Z e. W ) -> supp = ( x e. _V , z e. _V |-> { i e. dom x | ( x " { i } ) =/= { z } } ) ) |
| 3 | dmeq | |- ( x = X -> dom x = dom X ) |
|
| 4 | 3 | adantr | |- ( ( x = X /\ z = Z ) -> dom x = dom X ) |
| 5 | imaeq1 | |- ( x = X -> ( x " { i } ) = ( X " { i } ) ) |
|
| 6 | 5 | adantr | |- ( ( x = X /\ z = Z ) -> ( x " { i } ) = ( X " { i } ) ) |
| 7 | sneq | |- ( z = Z -> { z } = { Z } ) |
|
| 8 | 7 | adantl | |- ( ( x = X /\ z = Z ) -> { z } = { Z } ) |
| 9 | 6 8 | neeq12d | |- ( ( x = X /\ z = Z ) -> ( ( x " { i } ) =/= { z } <-> ( X " { i } ) =/= { Z } ) ) |
| 10 | 4 9 | rabeqbidv | |- ( ( x = X /\ z = Z ) -> { i e. dom x | ( x " { i } ) =/= { z } } = { i e. dom X | ( X " { i } ) =/= { Z } } ) |
| 11 | 10 | adantl | |- ( ( ( X e. V /\ Z e. W ) /\ ( x = X /\ z = Z ) ) -> { i e. dom x | ( x " { i } ) =/= { z } } = { i e. dom X | ( X " { i } ) =/= { Z } } ) |
| 12 | elex | |- ( X e. V -> X e. _V ) |
|
| 13 | 12 | adantr | |- ( ( X e. V /\ Z e. W ) -> X e. _V ) |
| 14 | elex | |- ( Z e. W -> Z e. _V ) |
|
| 15 | 14 | adantl | |- ( ( X e. V /\ Z e. W ) -> Z e. _V ) |
| 16 | dmexg | |- ( X e. V -> dom X e. _V ) |
|
| 17 | 16 | adantr | |- ( ( X e. V /\ Z e. W ) -> dom X e. _V ) |
| 18 | rabexg | |- ( dom X e. _V -> { i e. dom X | ( X " { i } ) =/= { Z } } e. _V ) |
|
| 19 | 17 18 | syl | |- ( ( X e. V /\ Z e. W ) -> { i e. dom X | ( X " { i } ) =/= { Z } } e. _V ) |
| 20 | 2 11 13 15 19 | ovmpod | |- ( ( X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X " { i } ) =/= { Z } } ) |