This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | suppsnop.f | ⊢ 𝐹 = { 〈 𝑋 , 𝑌 〉 } | |
| Assertion | suppsnop | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 supp 𝑍 ) = if ( 𝑌 = 𝑍 , ∅ , { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppsnop.f | ⊢ 𝐹 = { 〈 𝑋 , 𝑌 〉 } | |
| 2 | f1osng | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } –1-1-onto→ { 𝑌 } ) | |
| 3 | f1of | ⊢ ( { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } –1-1-onto→ { 𝑌 } → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } ⟶ { 𝑌 } ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } ⟶ { 𝑌 } ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } ⟶ { 𝑌 } ) |
| 6 | 1 | feq1i | ⊢ ( 𝐹 : { 𝑋 } ⟶ { 𝑌 } ↔ { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } ⟶ { 𝑌 } ) |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → 𝐹 : { 𝑋 } ⟶ { 𝑌 } ) |
| 8 | snex | ⊢ { 𝑋 } ∈ V | |
| 9 | fex | ⊢ ( ( 𝐹 : { 𝑋 } ⟶ { 𝑌 } ∧ { 𝑋 } ∈ V ) → 𝐹 ∈ V ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → 𝐹 ∈ V ) |
| 11 | simp3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → 𝑍 ∈ 𝑈 ) | |
| 12 | suppval | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } } ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } } ) |
| 14 | 7 | fdmd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → dom 𝐹 = { 𝑋 } ) |
| 15 | 14 | rabeqdv | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } } = { 𝑥 ∈ { 𝑋 } ∣ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } } ) |
| 16 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 17 | 16 | imaeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 “ { 𝑥 } ) = ( 𝐹 “ { 𝑋 } ) ) |
| 18 | 17 | neeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ↔ ( 𝐹 “ { 𝑋 } ) ≠ { 𝑍 } ) ) |
| 19 | 18 | rabsnif | ⊢ { 𝑥 ∈ { 𝑋 } ∣ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } } = if ( ( 𝐹 “ { 𝑋 } ) ≠ { 𝑍 } , { 𝑋 } , ∅ ) |
| 20 | 15 19 | eqtrdi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } } = if ( ( 𝐹 “ { 𝑋 } ) ≠ { 𝑍 } , { 𝑋 } , ∅ ) ) |
| 21 | 7 | ffnd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → 𝐹 Fn { 𝑋 } ) |
| 22 | snidg | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) | |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → 𝑋 ∈ { 𝑋 } ) |
| 24 | fnsnfv | ⊢ ( ( 𝐹 Fn { 𝑋 } ∧ 𝑋 ∈ { 𝑋 } ) → { ( 𝐹 ‘ 𝑋 ) } = ( 𝐹 “ { 𝑋 } ) ) | |
| 25 | 24 | eqcomd | ⊢ ( ( 𝐹 Fn { 𝑋 } ∧ 𝑋 ∈ { 𝑋 } ) → ( 𝐹 “ { 𝑋 } ) = { ( 𝐹 ‘ 𝑋 ) } ) |
| 26 | 21 23 25 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 “ { 𝑋 } ) = { ( 𝐹 ‘ 𝑋 ) } ) |
| 27 | 26 | neeq1d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( ( 𝐹 “ { 𝑋 } ) ≠ { 𝑍 } ↔ { ( 𝐹 ‘ 𝑋 ) } ≠ { 𝑍 } ) ) |
| 28 | 1 | fveq1i | ⊢ ( 𝐹 ‘ 𝑋 ) = ( { 〈 𝑋 , 𝑌 〉 } ‘ 𝑋 ) |
| 29 | fvsng | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( { 〈 𝑋 , 𝑌 〉 } ‘ 𝑋 ) = 𝑌 ) | |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( { 〈 𝑋 , 𝑌 〉 } ‘ 𝑋 ) = 𝑌 ) |
| 31 | 28 30 | eqtrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 32 | 31 | sneqd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → { ( 𝐹 ‘ 𝑋 ) } = { 𝑌 } ) |
| 33 | 32 | neeq1d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( { ( 𝐹 ‘ 𝑋 ) } ≠ { 𝑍 } ↔ { 𝑌 } ≠ { 𝑍 } ) ) |
| 34 | sneqbg | ⊢ ( 𝑌 ∈ 𝑊 → ( { 𝑌 } = { 𝑍 } ↔ 𝑌 = 𝑍 ) ) | |
| 35 | 34 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( { 𝑌 } = { 𝑍 } ↔ 𝑌 = 𝑍 ) ) |
| 36 | 35 | necon3abid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( { 𝑌 } ≠ { 𝑍 } ↔ ¬ 𝑌 = 𝑍 ) ) |
| 37 | 27 33 36 | 3bitrd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( ( 𝐹 “ { 𝑋 } ) ≠ { 𝑍 } ↔ ¬ 𝑌 = 𝑍 ) ) |
| 38 | 37 | ifbid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → if ( ( 𝐹 “ { 𝑋 } ) ≠ { 𝑍 } , { 𝑋 } , ∅ ) = if ( ¬ 𝑌 = 𝑍 , { 𝑋 } , ∅ ) ) |
| 39 | ifnot | ⊢ if ( ¬ 𝑌 = 𝑍 , { 𝑋 } , ∅ ) = if ( 𝑌 = 𝑍 , ∅ , { 𝑋 } ) | |
| 40 | 38 39 | eqtrdi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → if ( ( 𝐹 “ { 𝑋 } ) ≠ { 𝑍 } , { 𝑋 } , ∅ ) = if ( 𝑌 = 𝑍 , ∅ , { 𝑋 } ) ) |
| 41 | 13 20 40 | 3eqtrd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 supp 𝑍 ) = if ( 𝑌 = 𝑍 , ∅ , { 𝑋 } ) ) |