This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supgtoreq.1 | |- ( ph -> R Or A ) |
|
| supgtoreq.2 | |- ( ph -> B C_ A ) |
||
| supgtoreq.3 | |- ( ph -> B e. Fin ) |
||
| supgtoreq.4 | |- ( ph -> C e. B ) |
||
| supgtoreq.5 | |- ( ph -> S = sup ( B , A , R ) ) |
||
| Assertion | supgtoreq | |- ( ph -> ( C R S \/ C = S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supgtoreq.1 | |- ( ph -> R Or A ) |
|
| 2 | supgtoreq.2 | |- ( ph -> B C_ A ) |
|
| 3 | supgtoreq.3 | |- ( ph -> B e. Fin ) |
|
| 4 | supgtoreq.4 | |- ( ph -> C e. B ) |
|
| 5 | supgtoreq.5 | |- ( ph -> S = sup ( B , A , R ) ) |
|
| 6 | 4 | ne0d | |- ( ph -> B =/= (/) ) |
| 7 | fisup2g | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> E. x e. B ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
|
| 8 | 1 3 6 2 7 | syl13anc | |- ( ph -> E. x e. B ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
| 9 | ssrexv | |- ( B C_ A -> ( E. x e. B ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) ) |
|
| 10 | 2 8 9 | sylc | |- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
| 11 | 1 10 | supub | |- ( ph -> ( C e. B -> -. sup ( B , A , R ) R C ) ) |
| 12 | 4 11 | mpd | |- ( ph -> -. sup ( B , A , R ) R C ) |
| 13 | 5 12 | eqnbrtrd | |- ( ph -> -. S R C ) |
| 14 | fisupcl | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , R ) e. B ) |
|
| 15 | 1 3 6 2 14 | syl13anc | |- ( ph -> sup ( B , A , R ) e. B ) |
| 16 | 2 15 | sseldd | |- ( ph -> sup ( B , A , R ) e. A ) |
| 17 | 5 16 | eqeltrd | |- ( ph -> S e. A ) |
| 18 | 2 4 | sseldd | |- ( ph -> C e. A ) |
| 19 | sotric | |- ( ( R Or A /\ ( S e. A /\ C e. A ) ) -> ( S R C <-> -. ( S = C \/ C R S ) ) ) |
|
| 20 | 1 17 18 19 | syl12anc | |- ( ph -> ( S R C <-> -. ( S = C \/ C R S ) ) ) |
| 21 | orcom | |- ( ( S = C \/ C R S ) <-> ( C R S \/ S = C ) ) |
|
| 22 | eqcom | |- ( S = C <-> C = S ) |
|
| 23 | 22 | orbi2i | |- ( ( C R S \/ S = C ) <-> ( C R S \/ C = S ) ) |
| 24 | 21 23 | bitri | |- ( ( S = C \/ C R S ) <-> ( C R S \/ C = S ) ) |
| 25 | 24 | notbii | |- ( -. ( S = C \/ C R S ) <-> -. ( C R S \/ C = S ) ) |
| 26 | 20 25 | bitr2di | |- ( ph -> ( -. ( C R S \/ C = S ) <-> S R C ) ) |
| 27 | 13 26 | mtbird | |- ( ph -> -. -. ( C R S \/ C = S ) ) |
| 28 | 27 | notnotrd | |- ( ph -> ( C R S \/ C = S ) ) |