This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supgtoreq.1 | ||
| supgtoreq.2 | |||
| supgtoreq.3 | |||
| supgtoreq.4 | |||
| supgtoreq.5 | |||
| Assertion | supgtoreq |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supgtoreq.1 | ||
| 2 | supgtoreq.2 | ||
| 3 | supgtoreq.3 | ||
| 4 | supgtoreq.4 | ||
| 5 | supgtoreq.5 | ||
| 6 | 4 | ne0d | |
| 7 | fisup2g | ||
| 8 | 1 3 6 2 7 | syl13anc | |
| 9 | ssrexv | ||
| 10 | 2 8 9 | sylc | |
| 11 | 1 10 | supub | |
| 12 | 4 11 | mpd | |
| 13 | 5 12 | eqnbrtrd | |
| 14 | fisupcl | ||
| 15 | 1 3 6 2 14 | syl13anc | |
| 16 | 2 15 | sseldd | |
| 17 | 5 16 | eqeltrd | |
| 18 | 2 4 | sseldd | |
| 19 | sotric | ||
| 20 | 1 17 18 19 | syl12anc | |
| 21 | orcom | ||
| 22 | eqcom | ||
| 23 | 22 | orbi2i | |
| 24 | 21 23 | bitri | |
| 25 | 24 | notbii | |
| 26 | 20 25 | bitr2di | |
| 27 | 13 26 | mtbird | |
| 28 | 27 | notnotrd |