This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a pair. (Contributed by NM, 17-Jun-2007) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppr | |- ( ( R Or A /\ B e. A /\ C e. A ) -> sup ( { B , C } , A , R ) = if ( C R B , B , C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( R Or A /\ B e. A /\ C e. A ) -> R Or A ) |
|
| 2 | ifcl | |- ( ( B e. A /\ C e. A ) -> if ( C R B , B , C ) e. A ) |
|
| 3 | 2 | 3adant1 | |- ( ( R Or A /\ B e. A /\ C e. A ) -> if ( C R B , B , C ) e. A ) |
| 4 | ifpr | |- ( ( B e. A /\ C e. A ) -> if ( C R B , B , C ) e. { B , C } ) |
|
| 5 | 4 | 3adant1 | |- ( ( R Or A /\ B e. A /\ C e. A ) -> if ( C R B , B , C ) e. { B , C } ) |
| 6 | breq1 | |- ( B = if ( C R B , B , C ) -> ( B R B <-> if ( C R B , B , C ) R B ) ) |
|
| 7 | 6 | notbid | |- ( B = if ( C R B , B , C ) -> ( -. B R B <-> -. if ( C R B , B , C ) R B ) ) |
| 8 | breq1 | |- ( C = if ( C R B , B , C ) -> ( C R B <-> if ( C R B , B , C ) R B ) ) |
|
| 9 | 8 | notbid | |- ( C = if ( C R B , B , C ) -> ( -. C R B <-> -. if ( C R B , B , C ) R B ) ) |
| 10 | sonr | |- ( ( R Or A /\ B e. A ) -> -. B R B ) |
|
| 11 | 10 | 3adant3 | |- ( ( R Or A /\ B e. A /\ C e. A ) -> -. B R B ) |
| 12 | 11 | adantr | |- ( ( ( R Or A /\ B e. A /\ C e. A ) /\ C R B ) -> -. B R B ) |
| 13 | simpr | |- ( ( ( R Or A /\ B e. A /\ C e. A ) /\ -. C R B ) -> -. C R B ) |
|
| 14 | 7 9 12 13 | ifbothda | |- ( ( R Or A /\ B e. A /\ C e. A ) -> -. if ( C R B , B , C ) R B ) |
| 15 | breq1 | |- ( B = if ( C R B , B , C ) -> ( B R C <-> if ( C R B , B , C ) R C ) ) |
|
| 16 | 15 | notbid | |- ( B = if ( C R B , B , C ) -> ( -. B R C <-> -. if ( C R B , B , C ) R C ) ) |
| 17 | breq1 | |- ( C = if ( C R B , B , C ) -> ( C R C <-> if ( C R B , B , C ) R C ) ) |
|
| 18 | 17 | notbid | |- ( C = if ( C R B , B , C ) -> ( -. C R C <-> -. if ( C R B , B , C ) R C ) ) |
| 19 | so2nr | |- ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> -. ( C R B /\ B R C ) ) |
|
| 20 | 19 | 3impb | |- ( ( R Or A /\ C e. A /\ B e. A ) -> -. ( C R B /\ B R C ) ) |
| 21 | 20 | 3com23 | |- ( ( R Or A /\ B e. A /\ C e. A ) -> -. ( C R B /\ B R C ) ) |
| 22 | imnan | |- ( ( C R B -> -. B R C ) <-> -. ( C R B /\ B R C ) ) |
|
| 23 | 21 22 | sylibr | |- ( ( R Or A /\ B e. A /\ C e. A ) -> ( C R B -> -. B R C ) ) |
| 24 | 23 | imp | |- ( ( ( R Or A /\ B e. A /\ C e. A ) /\ C R B ) -> -. B R C ) |
| 25 | sonr | |- ( ( R Or A /\ C e. A ) -> -. C R C ) |
|
| 26 | 25 | 3adant2 | |- ( ( R Or A /\ B e. A /\ C e. A ) -> -. C R C ) |
| 27 | 26 | adantr | |- ( ( ( R Or A /\ B e. A /\ C e. A ) /\ -. C R B ) -> -. C R C ) |
| 28 | 16 18 24 27 | ifbothda | |- ( ( R Or A /\ B e. A /\ C e. A ) -> -. if ( C R B , B , C ) R C ) |
| 29 | breq2 | |- ( y = B -> ( if ( C R B , B , C ) R y <-> if ( C R B , B , C ) R B ) ) |
|
| 30 | 29 | notbid | |- ( y = B -> ( -. if ( C R B , B , C ) R y <-> -. if ( C R B , B , C ) R B ) ) |
| 31 | breq2 | |- ( y = C -> ( if ( C R B , B , C ) R y <-> if ( C R B , B , C ) R C ) ) |
|
| 32 | 31 | notbid | |- ( y = C -> ( -. if ( C R B , B , C ) R y <-> -. if ( C R B , B , C ) R C ) ) |
| 33 | 30 32 | ralprg | |- ( ( B e. A /\ C e. A ) -> ( A. y e. { B , C } -. if ( C R B , B , C ) R y <-> ( -. if ( C R B , B , C ) R B /\ -. if ( C R B , B , C ) R C ) ) ) |
| 34 | 33 | 3adant1 | |- ( ( R Or A /\ B e. A /\ C e. A ) -> ( A. y e. { B , C } -. if ( C R B , B , C ) R y <-> ( -. if ( C R B , B , C ) R B /\ -. if ( C R B , B , C ) R C ) ) ) |
| 35 | 14 28 34 | mpbir2and | |- ( ( R Or A /\ B e. A /\ C e. A ) -> A. y e. { B , C } -. if ( C R B , B , C ) R y ) |
| 36 | 35 | r19.21bi | |- ( ( ( R Or A /\ B e. A /\ C e. A ) /\ y e. { B , C } ) -> -. if ( C R B , B , C ) R y ) |
| 37 | 1 3 5 36 | supmax | |- ( ( R Or A /\ B e. A /\ C e. A ) -> sup ( { B , C } , A , R ) = if ( C R B , B , C ) ) |