This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supgtoreq.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| supgtoreq.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| supgtoreq.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| supgtoreq.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| supgtoreq.5 | ⊢ ( 𝜑 → 𝑆 = sup ( 𝐵 , 𝐴 , 𝑅 ) ) | ||
| Assertion | supgtoreq | ⊢ ( 𝜑 → ( 𝐶 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supgtoreq.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | supgtoreq.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 3 | supgtoreq.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 4 | supgtoreq.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 5 | supgtoreq.5 | ⊢ ( 𝜑 → 𝑆 = sup ( 𝐵 , 𝐴 , 𝑅 ) ) | |
| 6 | 4 | ne0d | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 7 | fisup2g | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
| 8 | 1 3 6 2 7 | syl13anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 9 | ssrexv | ⊢ ( 𝐵 ⊆ 𝐴 → ( ∃ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ) | |
| 10 | 2 8 9 | sylc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 11 | 1 10 | supub | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |
| 12 | 4 11 | mpd | ⊢ ( 𝜑 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) |
| 13 | 5 12 | eqnbrtrd | ⊢ ( 𝜑 → ¬ 𝑆 𝑅 𝐶 ) |
| 14 | fisupcl | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴 ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) | |
| 15 | 1 3 6 2 14 | syl13anc | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) |
| 16 | 2 15 | sseldd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| 17 | 5 16 | eqeltrd | ⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
| 18 | 2 4 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
| 19 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝑆 𝑅 𝐶 ↔ ¬ ( 𝑆 = 𝐶 ∨ 𝐶 𝑅 𝑆 ) ) ) | |
| 20 | 1 17 18 19 | syl12anc | ⊢ ( 𝜑 → ( 𝑆 𝑅 𝐶 ↔ ¬ ( 𝑆 = 𝐶 ∨ 𝐶 𝑅 𝑆 ) ) ) |
| 21 | orcom | ⊢ ( ( 𝑆 = 𝐶 ∨ 𝐶 𝑅 𝑆 ) ↔ ( 𝐶 𝑅 𝑆 ∨ 𝑆 = 𝐶 ) ) | |
| 22 | eqcom | ⊢ ( 𝑆 = 𝐶 ↔ 𝐶 = 𝑆 ) | |
| 23 | 22 | orbi2i | ⊢ ( ( 𝐶 𝑅 𝑆 ∨ 𝑆 = 𝐶 ) ↔ ( 𝐶 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 24 | 21 23 | bitri | ⊢ ( ( 𝑆 = 𝐶 ∨ 𝐶 𝑅 𝑆 ) ↔ ( 𝐶 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 25 | 24 | notbii | ⊢ ( ¬ ( 𝑆 = 𝐶 ∨ 𝐶 𝑅 𝑆 ) ↔ ¬ ( 𝐶 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 26 | 20 25 | bitr2di | ⊢ ( 𝜑 → ( ¬ ( 𝐶 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ↔ 𝑆 𝑅 𝐶 ) ) |
| 27 | 13 26 | mtbird | ⊢ ( 𝜑 → ¬ ¬ ( 𝐶 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 28 | 27 | notnotrd | ⊢ ( 𝜑 → ( 𝐶 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |