This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sumrb . (Contributed by Mario Carneiro, 12-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| sumrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| Assertion | sumrblem | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( + , F ) |` ( ZZ>= ` N ) ) = seq N ( + , F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| 2 | summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | sumrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | addlid | |- ( n e. CC -> ( 0 + n ) = n ) |
|
| 5 | 4 | adantl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. CC ) -> ( 0 + n ) = n ) |
| 6 | 0cnd | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> 0 e. CC ) |
|
| 7 | 3 | adantr | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> N e. ( ZZ>= ` M ) ) |
| 8 | iftrue | |- ( k e. A -> if ( k e. A , B , 0 ) = B ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) = B ) |
| 10 | 9 2 | eqeltrd | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) e. CC ) |
| 11 | 10 | ex | |- ( ph -> ( k e. A -> if ( k e. A , B , 0 ) e. CC ) ) |
| 12 | iffalse | |- ( -. k e. A -> if ( k e. A , B , 0 ) = 0 ) |
|
| 13 | 0cn | |- 0 e. CC |
|
| 14 | 12 13 | eqeltrdi | |- ( -. k e. A -> if ( k e. A , B , 0 ) e. CC ) |
| 15 | 11 14 | pm2.61d1 | |- ( ph -> if ( k e. A , B , 0 ) e. CC ) |
| 16 | 15 | adantr | |- ( ( ph /\ k e. ZZ ) -> if ( k e. A , B , 0 ) e. CC ) |
| 17 | 16 1 | fmptd | |- ( ph -> F : ZZ --> CC ) |
| 18 | 17 | adantr | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> F : ZZ --> CC ) |
| 19 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 20 | 3 19 | syl | |- ( ph -> N e. ZZ ) |
| 21 | 20 | adantr | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> N e. ZZ ) |
| 22 | 18 21 | ffvelcdmd | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( F ` N ) e. CC ) |
| 23 | elfzelz | |- ( n e. ( M ... ( N - 1 ) ) -> n e. ZZ ) |
|
| 24 | 23 | adantl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ZZ ) |
| 25 | simplr | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> A C_ ( ZZ>= ` N ) ) |
|
| 26 | 20 | zcnd | |- ( ph -> N e. CC ) |
| 27 | 26 | ad2antrr | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> N e. CC ) |
| 28 | ax-1cn | |- 1 e. CC |
|
| 29 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 30 | 27 28 29 | sylancl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 31 | 30 | fveq2d | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) ) |
| 32 | 25 31 | sseqtrrd | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> A C_ ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 33 | fznuz | |- ( n e. ( M ... ( N - 1 ) ) -> -. n e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
|
| 34 | 33 | adantl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> -. n e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 35 | 32 34 | ssneldd | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> -. n e. A ) |
| 36 | 24 35 | eldifd | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ( ZZ \ A ) ) |
| 37 | fveqeq2 | |- ( k = n -> ( ( F ` k ) = 0 <-> ( F ` n ) = 0 ) ) |
|
| 38 | eldifi | |- ( k e. ( ZZ \ A ) -> k e. ZZ ) |
|
| 39 | eldifn | |- ( k e. ( ZZ \ A ) -> -. k e. A ) |
|
| 40 | 39 12 | syl | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) = 0 ) |
| 41 | 40 13 | eqeltrdi | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) e. CC ) |
| 42 | 1 | fvmpt2 | |- ( ( k e. ZZ /\ if ( k e. A , B , 0 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 43 | 38 41 42 | syl2anc | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 44 | 43 40 | eqtrd | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = 0 ) |
| 45 | 37 44 | vtoclga | |- ( n e. ( ZZ \ A ) -> ( F ` n ) = 0 ) |
| 46 | 36 45 | syl | |- ( ( ( ph /\ A C_ ( ZZ>= ` N ) ) /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` n ) = 0 ) |
| 47 | 5 6 7 22 46 | seqid | |- ( ( ph /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( + , F ) |` ( ZZ>= ` N ) ) = seq N ( + , F ) ) |