This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgsubcl.p | |- .- = ( -g ` G ) |
|
| subgsub.h | |- H = ( G |`s S ) |
||
| subgsub.n | |- N = ( -g ` H ) |
||
| Assertion | subgsub | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) = ( X N Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgsubcl.p | |- .- = ( -g ` G ) |
|
| 2 | subgsub.h | |- H = ( G |`s S ) |
|
| 3 | subgsub.n | |- N = ( -g ` H ) |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | 2 4 | ressplusg | |- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( +g ` G ) = ( +g ` H ) ) |
| 7 | eqidd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X = X ) |
|
| 8 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 9 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 10 | 2 8 9 | subginv | |- ( ( S e. ( SubGrp ` G ) /\ Y e. S ) -> ( ( invg ` G ) ` Y ) = ( ( invg ` H ) ` Y ) ) |
| 11 | 10 | 3adant2 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( ( invg ` G ) ` Y ) = ( ( invg ` H ) ` Y ) ) |
| 12 | 6 7 11 | oveq123d | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = ( X ( +g ` H ) ( ( invg ` H ) ` Y ) ) ) |
| 13 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 14 | 13 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> S C_ ( Base ` G ) ) |
| 16 | simp2 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. S ) |
|
| 17 | 15 16 | sseldd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. ( Base ` G ) ) |
| 18 | simp3 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. S ) |
|
| 19 | 15 18 | sseldd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. ( Base ` G ) ) |
| 20 | 13 4 8 1 | grpsubval | |- ( ( X e. ( Base ` G ) /\ Y e. ( Base ` G ) ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 21 | 17 19 20 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 22 | 2 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 23 | 22 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> S = ( Base ` H ) ) |
| 24 | 16 23 | eleqtrd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. ( Base ` H ) ) |
| 25 | 18 23 | eleqtrd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. ( Base ` H ) ) |
| 26 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 27 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 28 | 26 27 9 3 | grpsubval | |- ( ( X e. ( Base ` H ) /\ Y e. ( Base ` H ) ) -> ( X N Y ) = ( X ( +g ` H ) ( ( invg ` H ) ` Y ) ) ) |
| 29 | 24 25 28 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X N Y ) = ( X ( +g ` H ) ( ( invg ` H ) ` Y ) ) ) |
| 30 | 12 21 29 | 3eqtr4d | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) = ( X N Y ) ) |