This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 15-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uhgrfun.e | |- E = ( iEdg ` G ) |
|
| Assertion | uhgrn0 | |- ( ( G e. UHGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrfun.e | |- E = ( iEdg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | 2 1 | uhgrf | |- ( G e. UHGraph -> E : dom E --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 4 | fndm | |- ( E Fn A -> dom E = A ) |
|
| 5 | 4 | feq2d | |- ( E Fn A -> ( E : dom E --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> E : A --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 6 | 3 5 | syl5ibcom | |- ( G e. UHGraph -> ( E Fn A -> E : A --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 7 | 6 | imp | |- ( ( G e. UHGraph /\ E Fn A ) -> E : A --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 8 | 7 | ffvelcdmda | |- ( ( ( G e. UHGraph /\ E Fn A ) /\ F e. A ) -> ( E ` F ) e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 9 | 8 | 3impa | |- ( ( G e. UHGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 10 | eldifsni | |- ( ( E ` F ) e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( E ` F ) =/= (/) ) |
|
| 11 | 9 10 | syl | |- ( ( G e. UHGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) =/= (/) ) |