This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnnsubcl.b | |- B = ( Base ` G ) |
|
| mulgnnsubcl.t | |- .x. = ( .g ` G ) |
||
| mulgnnsubcl.p | |- .+ = ( +g ` G ) |
||
| mulgnnsubcl.g | |- ( ph -> G e. V ) |
||
| mulgnnsubcl.s | |- ( ph -> S C_ B ) |
||
| mulgnnsubcl.c | |- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
||
| mulgnn0subcl.z | |- .0. = ( 0g ` G ) |
||
| mulgnn0subcl.c | |- ( ph -> .0. e. S ) |
||
| mulgsubcl.i | |- I = ( invg ` G ) |
||
| mulgsubcl.c | |- ( ( ph /\ x e. S ) -> ( I ` x ) e. S ) |
||
| Assertion | mulgsubcl | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnnsubcl.b | |- B = ( Base ` G ) |
|
| 2 | mulgnnsubcl.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnnsubcl.p | |- .+ = ( +g ` G ) |
|
| 4 | mulgnnsubcl.g | |- ( ph -> G e. V ) |
|
| 5 | mulgnnsubcl.s | |- ( ph -> S C_ B ) |
|
| 6 | mulgnnsubcl.c | |- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
|
| 7 | mulgnn0subcl.z | |- .0. = ( 0g ` G ) |
|
| 8 | mulgnn0subcl.c | |- ( ph -> .0. e. S ) |
|
| 9 | mulgsubcl.i | |- I = ( invg ` G ) |
|
| 10 | mulgsubcl.c | |- ( ( ph /\ x e. S ) -> ( I ` x ) e. S ) |
|
| 11 | 1 2 3 4 5 6 7 8 | mulgnn0subcl | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N .x. X ) e. S ) |
| 12 | 11 | 3expa | |- ( ( ( ph /\ N e. NN0 ) /\ X e. S ) -> ( N .x. X ) e. S ) |
| 13 | 12 | an32s | |- ( ( ( ph /\ X e. S ) /\ N e. NN0 ) -> ( N .x. X ) e. S ) |
| 14 | 13 | 3adantl2 | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ N e. NN0 ) -> ( N .x. X ) e. S ) |
| 15 | simp2 | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> N e. ZZ ) |
|
| 16 | 15 | adantr | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> N e. ZZ ) |
| 17 | 16 | zcnd | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> N e. CC ) |
| 18 | 17 | negnegd | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> -u -u N = N ) |
| 19 | 18 | oveq1d | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( -u -u N .x. X ) = ( N .x. X ) ) |
| 20 | id | |- ( -u N e. NN -> -u N e. NN ) |
|
| 21 | 5 | 3ad2ant1 | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> S C_ B ) |
| 22 | simp3 | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> X e. S ) |
|
| 23 | 21 22 | sseldd | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> X e. B ) |
| 24 | 1 2 9 | mulgnegnn | |- ( ( -u N e. NN /\ X e. B ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 25 | 20 23 24 | syl2anr | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 26 | 19 25 | eqtr3d | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 27 | fveq2 | |- ( x = ( -u N .x. X ) -> ( I ` x ) = ( I ` ( -u N .x. X ) ) ) |
|
| 28 | 27 | eleq1d | |- ( x = ( -u N .x. X ) -> ( ( I ` x ) e. S <-> ( I ` ( -u N .x. X ) ) e. S ) ) |
| 29 | 10 | ralrimiva | |- ( ph -> A. x e. S ( I ` x ) e. S ) |
| 30 | 29 | 3ad2ant1 | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> A. x e. S ( I ` x ) e. S ) |
| 31 | 30 | adantr | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> A. x e. S ( I ` x ) e. S ) |
| 32 | 1 2 3 4 5 6 | mulgnnsubcl | |- ( ( ph /\ -u N e. NN /\ X e. S ) -> ( -u N .x. X ) e. S ) |
| 33 | 32 | 3expa | |- ( ( ( ph /\ -u N e. NN ) /\ X e. S ) -> ( -u N .x. X ) e. S ) |
| 34 | 33 | an32s | |- ( ( ( ph /\ X e. S ) /\ -u N e. NN ) -> ( -u N .x. X ) e. S ) |
| 35 | 34 | 3adantl2 | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( -u N .x. X ) e. S ) |
| 36 | 28 31 35 | rspcdva | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( I ` ( -u N .x. X ) ) e. S ) |
| 37 | 26 36 | eqeltrd | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( N .x. X ) e. S ) |
| 38 | 37 | adantrl | |- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( N .x. X ) e. S ) |
| 39 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 40 | 15 39 | sylib | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 41 | 14 38 40 | mpjaodan | |- ( ( ph /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) e. S ) |