This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1fval.v | |- B = ( Base ` G ) |
|
| pj1fval.a | |- .+ = ( +g ` G ) |
||
| pj1fval.s | |- .(+) = ( LSSum ` G ) |
||
| pj1fval.p | |- P = ( proj1 ` G ) |
||
| Assertion | pj1fval | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1fval.v | |- B = ( Base ` G ) |
|
| 2 | pj1fval.a | |- .+ = ( +g ` G ) |
|
| 3 | pj1fval.s | |- .(+) = ( LSSum ` G ) |
|
| 4 | pj1fval.p | |- P = ( proj1 ` G ) |
|
| 5 | elex | |- ( G e. V -> G e. _V ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> G e. _V ) |
| 7 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = B ) |
| 9 | 8 | pweqd | |- ( g = G -> ~P ( Base ` g ) = ~P B ) |
| 10 | fveq2 | |- ( g = G -> ( LSSum ` g ) = ( LSSum ` G ) ) |
|
| 11 | 10 3 | eqtr4di | |- ( g = G -> ( LSSum ` g ) = .(+) ) |
| 12 | 11 | oveqd | |- ( g = G -> ( t ( LSSum ` g ) u ) = ( t .(+) u ) ) |
| 13 | fveq2 | |- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
|
| 14 | 13 2 | eqtr4di | |- ( g = G -> ( +g ` g ) = .+ ) |
| 15 | 14 | oveqd | |- ( g = G -> ( x ( +g ` g ) y ) = ( x .+ y ) ) |
| 16 | 15 | eqeq2d | |- ( g = G -> ( z = ( x ( +g ` g ) y ) <-> z = ( x .+ y ) ) ) |
| 17 | 16 | rexbidv | |- ( g = G -> ( E. y e. u z = ( x ( +g ` g ) y ) <-> E. y e. u z = ( x .+ y ) ) ) |
| 18 | 17 | riotabidv | |- ( g = G -> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) = ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) |
| 19 | 12 18 | mpteq12dv | |- ( g = G -> ( z e. ( t ( LSSum ` g ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) ) = ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) |
| 20 | 9 9 19 | mpoeq123dv | |- ( g = G -> ( t e. ~P ( Base ` g ) , u e. ~P ( Base ` g ) |-> ( z e. ( t ( LSSum ` g ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) ) ) = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
| 21 | df-pj1 | |- proj1 = ( g e. _V |-> ( t e. ~P ( Base ` g ) , u e. ~P ( Base ` g ) |-> ( z e. ( t ( LSSum ` g ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) ) ) ) |
|
| 22 | 1 | fvexi | |- B e. _V |
| 23 | 22 | pwex | |- ~P B e. _V |
| 24 | 23 23 | mpoex | |- ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) e. _V |
| 25 | 20 21 24 | fvmpt | |- ( G e. _V -> ( proj1 ` G ) = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
| 26 | 6 25 | syl | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( proj1 ` G ) = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
| 27 | 4 26 | eqtrid | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> P = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
| 28 | oveq12 | |- ( ( t = T /\ u = U ) -> ( t .(+) u ) = ( T .(+) U ) ) |
|
| 29 | 28 | adantl | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( t .(+) u ) = ( T .(+) U ) ) |
| 30 | simprl | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> t = T ) |
|
| 31 | simprr | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> u = U ) |
|
| 32 | 31 | rexeqdv | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( E. y e. u z = ( x .+ y ) <-> E. y e. U z = ( x .+ y ) ) ) |
| 33 | 30 32 | riotaeqbidv | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) = ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) |
| 34 | 29 33 | mpteq12dv | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |
| 35 | simp2 | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> T C_ B ) |
|
| 36 | 22 | elpw2 | |- ( T e. ~P B <-> T C_ B ) |
| 37 | 35 36 | sylibr | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> T e. ~P B ) |
| 38 | simp3 | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> U C_ B ) |
|
| 39 | 22 | elpw2 | |- ( U e. ~P B <-> U C_ B ) |
| 40 | 38 39 | sylibr | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> U e. ~P B ) |
| 41 | ovex | |- ( T .(+) U ) e. _V |
|
| 42 | 41 | mptex | |- ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) e. _V |
| 43 | 42 | a1i | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) e. _V ) |
| 44 | 27 34 37 40 43 | ovmpod | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |