This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subdivcomb2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - ( C x. B ) ) / C ) = ( ( A / C ) - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 2 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 3 | 1 2 | mulcld | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. B ) e. CC ) |
| 4 | divsubdir | |- ( ( A e. CC /\ ( C x. B ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - ( C x. B ) ) / C ) = ( ( A / C ) - ( ( C x. B ) / C ) ) ) |
|
| 5 | 3 4 | syld3an2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - ( C x. B ) ) / C ) = ( ( A / C ) - ( ( C x. B ) / C ) ) ) |
| 6 | simprl | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 7 | simpl | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 8 | simpr | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C e. CC /\ C =/= 0 ) ) |
|
| 9 | div23 | |- ( ( C e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = ( ( C / C ) x. B ) ) |
|
| 10 | 6 7 8 9 | syl3anc | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = ( ( C / C ) x. B ) ) |
| 11 | divid | |- ( ( C e. CC /\ C =/= 0 ) -> ( C / C ) = 1 ) |
|
| 12 | 11 | oveq1d | |- ( ( C e. CC /\ C =/= 0 ) -> ( ( C / C ) x. B ) = ( 1 x. B ) ) |
| 13 | mullid | |- ( B e. CC -> ( 1 x. B ) = B ) |
|
| 14 | 12 13 | sylan9eqr | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C / C ) x. B ) = B ) |
| 15 | 10 14 | eqtrd | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = B ) |
| 16 | 15 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = B ) |
| 17 | 16 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) - ( ( C x. B ) / C ) ) = ( ( A / C ) - B ) ) |
| 18 | 5 17 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - ( C x. B ) ) / C ) = ( ( A / C ) - B ) ) |