This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subdivcomb2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − ( 𝐶 · 𝐵 ) ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 3 | 1 2 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 4 | divsubdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 · 𝐵 ) ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − ( 𝐶 · 𝐵 ) ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) | |
| 5 | 3 4 | syld3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − ( 𝐶 · 𝐵 ) ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) |
| 6 | simprl | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) | |
| 7 | simpl | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 8 | simpr | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) | |
| 9 | div23 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = ( ( 𝐶 / 𝐶 ) · 𝐵 ) ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = ( ( 𝐶 / 𝐶 ) · 𝐵 ) ) |
| 11 | divid | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐶 / 𝐶 ) = 1 ) | |
| 12 | 11 | oveq1d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐶 / 𝐶 ) · 𝐵 ) = ( 1 · 𝐵 ) ) |
| 13 | mullid | ⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) | |
| 14 | 12 13 | sylan9eqr | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 / 𝐶 ) · 𝐵 ) = 𝐵 ) |
| 15 | 10 14 | eqtrd | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) − ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) − 𝐵 ) ) |
| 18 | 5 17 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − ( 𝐶 · 𝐵 ) ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − 𝐵 ) ) |