This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssc2.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| ssc2.2 | |- ( ph -> H C_cat J ) |
||
| ssc2.3 | |- ( ph -> X e. S ) |
||
| ssc2.4 | |- ( ph -> Y e. S ) |
||
| Assertion | ssc2 | |- ( ph -> ( X H Y ) C_ ( X J Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssc2.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| 2 | ssc2.2 | |- ( ph -> H C_cat J ) |
|
| 3 | ssc2.3 | |- ( ph -> X e. S ) |
|
| 4 | ssc2.4 | |- ( ph -> Y e. S ) |
|
| 5 | eqidd | |- ( ph -> dom dom J = dom dom J ) |
|
| 6 | 2 5 | sscfn2 | |- ( ph -> J Fn ( dom dom J X. dom dom J ) ) |
| 7 | sscrel | |- Rel C_cat |
|
| 8 | 7 | brrelex2i | |- ( H C_cat J -> J e. _V ) |
| 9 | dmexg | |- ( J e. _V -> dom J e. _V ) |
|
| 10 | dmexg | |- ( dom J e. _V -> dom dom J e. _V ) |
|
| 11 | 2 8 9 10 | 4syl | |- ( ph -> dom dom J e. _V ) |
| 12 | 1 6 11 | isssc | |- ( ph -> ( H C_cat J <-> ( S C_ dom dom J /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |
| 13 | 2 12 | mpbid | |- ( ph -> ( S C_ dom dom J /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) |
| 14 | 13 | simprd | |- ( ph -> A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) |
| 15 | oveq1 | |- ( x = X -> ( x H y ) = ( X H y ) ) |
|
| 16 | oveq1 | |- ( x = X -> ( x J y ) = ( X J y ) ) |
|
| 17 | 15 16 | sseq12d | |- ( x = X -> ( ( x H y ) C_ ( x J y ) <-> ( X H y ) C_ ( X J y ) ) ) |
| 18 | oveq2 | |- ( y = Y -> ( X H y ) = ( X H Y ) ) |
|
| 19 | oveq2 | |- ( y = Y -> ( X J y ) = ( X J Y ) ) |
|
| 20 | 18 19 | sseq12d | |- ( y = Y -> ( ( X H y ) C_ ( X J y ) <-> ( X H Y ) C_ ( X J Y ) ) ) |
| 21 | 17 20 | rspc2va | |- ( ( ( X e. S /\ Y e. S ) /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) -> ( X H Y ) C_ ( X J Y ) ) |
| 22 | 3 4 14 21 | syl21anc | |- ( ph -> ( X H Y ) C_ ( X J Y ) ) |