This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for addition. Theorem I.1 of Apostol p. 18. (Contributed by NM, 22-Nov-1994) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex2 | |- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> E. x e. CC ( x + A ) = 0 ) |
| 3 | oveq2 | |- ( ( A + B ) = ( A + C ) -> ( x + ( A + B ) ) = ( x + ( A + C ) ) ) |
|
| 4 | simprr | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + A ) = 0 ) |
|
| 5 | 4 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( 0 + B ) ) |
| 6 | simprl | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> x e. CC ) |
|
| 7 | simpl1 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> A e. CC ) |
|
| 8 | simpl2 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> B e. CC ) |
|
| 9 | 6 7 8 | addassd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + B ) = ( x + ( A + B ) ) ) |
| 10 | addlid | |- ( B e. CC -> ( 0 + B ) = B ) |
|
| 11 | 8 10 | syl | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + B ) = B ) |
| 12 | 5 9 11 | 3eqtr3d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + B ) ) = B ) |
| 13 | 4 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( 0 + C ) ) |
| 14 | simpl3 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> C e. CC ) |
|
| 15 | 6 7 14 | addassd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + A ) + C ) = ( x + ( A + C ) ) ) |
| 16 | addlid | |- ( C e. CC -> ( 0 + C ) = C ) |
|
| 17 | 14 16 | syl | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( 0 + C ) = C ) |
| 18 | 13 15 17 | 3eqtr3d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( x + ( A + C ) ) = C ) |
| 19 | 12 18 | eqeq12d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( x + ( A + B ) ) = ( x + ( A + C ) ) <-> B = C ) ) |
| 20 | 3 19 | imbitrid | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) -> B = C ) ) |
| 21 | oveq2 | |- ( B = C -> ( A + B ) = ( A + C ) ) |
|
| 22 | 20 21 | impbid1 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( x + A ) = 0 ) ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |
| 23 | 2 22 | rexlimddv | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) = ( A + C ) <-> B = C ) ) |