This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | structcnvcnv | |- ( F Struct X -> `' `' F = ( F \ { (/) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp | |- -. (/) e. ( _V X. _V ) |
|
| 2 | cnvcnv | |- `' `' F = ( F i^i ( _V X. _V ) ) |
|
| 3 | inss2 | |- ( F i^i ( _V X. _V ) ) C_ ( _V X. _V ) |
|
| 4 | 2 3 | eqsstri | |- `' `' F C_ ( _V X. _V ) |
| 5 | 4 | sseli | |- ( (/) e. `' `' F -> (/) e. ( _V X. _V ) ) |
| 6 | 1 5 | mto | |- -. (/) e. `' `' F |
| 7 | disjsn | |- ( ( `' `' F i^i { (/) } ) = (/) <-> -. (/) e. `' `' F ) |
|
| 8 | 6 7 | mpbir | |- ( `' `' F i^i { (/) } ) = (/) |
| 9 | cnvcnvss | |- `' `' F C_ F |
|
| 10 | reldisj | |- ( `' `' F C_ F -> ( ( `' `' F i^i { (/) } ) = (/) <-> `' `' F C_ ( F \ { (/) } ) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ( `' `' F i^i { (/) } ) = (/) <-> `' `' F C_ ( F \ { (/) } ) ) |
| 12 | 8 11 | mpbi | |- `' `' F C_ ( F \ { (/) } ) |
| 13 | 12 | a1i | |- ( F Struct X -> `' `' F C_ ( F \ { (/) } ) ) |
| 14 | structn0fun | |- ( F Struct X -> Fun ( F \ { (/) } ) ) |
|
| 15 | funrel | |- ( Fun ( F \ { (/) } ) -> Rel ( F \ { (/) } ) ) |
|
| 16 | 14 15 | syl | |- ( F Struct X -> Rel ( F \ { (/) } ) ) |
| 17 | dfrel2 | |- ( Rel ( F \ { (/) } ) <-> `' `' ( F \ { (/) } ) = ( F \ { (/) } ) ) |
|
| 18 | 16 17 | sylib | |- ( F Struct X -> `' `' ( F \ { (/) } ) = ( F \ { (/) } ) ) |
| 19 | difss | |- ( F \ { (/) } ) C_ F |
|
| 20 | cnvss | |- ( ( F \ { (/) } ) C_ F -> `' ( F \ { (/) } ) C_ `' F ) |
|
| 21 | cnvss | |- ( `' ( F \ { (/) } ) C_ `' F -> `' `' ( F \ { (/) } ) C_ `' `' F ) |
|
| 22 | 19 20 21 | mp2b | |- `' `' ( F \ { (/) } ) C_ `' `' F |
| 23 | 18 22 | eqsstrrdi | |- ( F Struct X -> ( F \ { (/) } ) C_ `' `' F ) |
| 24 | 13 23 | eqssd | |- ( F Struct X -> `' `' F = ( F \ { (/) } ) ) |