This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003) (Proof shortened by BJ, 26-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvcnv | |- `' `' A = ( A i^i ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvin | |- `' ( `' A i^i `' ( _V X. _V ) ) = ( `' `' A i^i `' `' ( _V X. _V ) ) |
|
| 2 | cnvin | |- `' ( A i^i ( _V X. _V ) ) = ( `' A i^i `' ( _V X. _V ) ) |
|
| 3 | 2 | cnveqi | |- `' `' ( A i^i ( _V X. _V ) ) = `' ( `' A i^i `' ( _V X. _V ) ) |
| 4 | relcnv | |- Rel `' `' A |
|
| 5 | df-rel | |- ( Rel `' `' A <-> `' `' A C_ ( _V X. _V ) ) |
|
| 6 | 4 5 | mpbi | |- `' `' A C_ ( _V X. _V ) |
| 7 | relxp | |- Rel ( _V X. _V ) |
|
| 8 | dfrel2 | |- ( Rel ( _V X. _V ) <-> `' `' ( _V X. _V ) = ( _V X. _V ) ) |
|
| 9 | 7 8 | mpbi | |- `' `' ( _V X. _V ) = ( _V X. _V ) |
| 10 | 6 9 | sseqtrri | |- `' `' A C_ `' `' ( _V X. _V ) |
| 11 | dfss | |- ( `' `' A C_ `' `' ( _V X. _V ) <-> `' `' A = ( `' `' A i^i `' `' ( _V X. _V ) ) ) |
|
| 12 | 10 11 | mpbi | |- `' `' A = ( `' `' A i^i `' `' ( _V X. _V ) ) |
| 13 | 1 3 12 | 3eqtr4ri | |- `' `' A = `' `' ( A i^i ( _V X. _V ) ) |
| 14 | relinxp | |- Rel ( A i^i ( _V X. _V ) ) |
|
| 15 | dfrel2 | |- ( Rel ( A i^i ( _V X. _V ) ) <-> `' `' ( A i^i ( _V X. _V ) ) = ( A i^i ( _V X. _V ) ) ) |
|
| 16 | 14 15 | mpbi | |- `' `' ( A i^i ( _V X. _V ) ) = ( A i^i ( _V X. _V ) ) |
| 17 | 13 16 | eqtri | |- `' `' A = ( A i^i ( _V X. _V ) ) |