This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | structcnvcnv | ⊢ ( 𝐹 Struct 𝑋 → ◡ ◡ 𝐹 = ( 𝐹 ∖ { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp | ⊢ ¬ ∅ ∈ ( V × V ) | |
| 2 | cnvcnv | ⊢ ◡ ◡ 𝐹 = ( 𝐹 ∩ ( V × V ) ) | |
| 3 | inss2 | ⊢ ( 𝐹 ∩ ( V × V ) ) ⊆ ( V × V ) | |
| 4 | 2 3 | eqsstri | ⊢ ◡ ◡ 𝐹 ⊆ ( V × V ) |
| 5 | 4 | sseli | ⊢ ( ∅ ∈ ◡ ◡ 𝐹 → ∅ ∈ ( V × V ) ) |
| 6 | 1 5 | mto | ⊢ ¬ ∅ ∈ ◡ ◡ 𝐹 |
| 7 | disjsn | ⊢ ( ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ◡ ◡ 𝐹 ) | |
| 8 | 6 7 | mpbir | ⊢ ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ |
| 9 | cnvcnvss | ⊢ ◡ ◡ 𝐹 ⊆ 𝐹 | |
| 10 | reldisj | ⊢ ( ◡ ◡ 𝐹 ⊆ 𝐹 → ( ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ ↔ ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ( ◡ ◡ 𝐹 ∩ { ∅ } ) = ∅ ↔ ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) ) |
| 12 | 8 11 | mpbi | ⊢ ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) |
| 13 | 12 | a1i | ⊢ ( 𝐹 Struct 𝑋 → ◡ ◡ 𝐹 ⊆ ( 𝐹 ∖ { ∅ } ) ) |
| 14 | structn0fun | ⊢ ( 𝐹 Struct 𝑋 → Fun ( 𝐹 ∖ { ∅ } ) ) | |
| 15 | funrel | ⊢ ( Fun ( 𝐹 ∖ { ∅ } ) → Rel ( 𝐹 ∖ { ∅ } ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐹 Struct 𝑋 → Rel ( 𝐹 ∖ { ∅ } ) ) |
| 17 | dfrel2 | ⊢ ( Rel ( 𝐹 ∖ { ∅ } ) ↔ ◡ ◡ ( 𝐹 ∖ { ∅ } ) = ( 𝐹 ∖ { ∅ } ) ) | |
| 18 | 16 17 | sylib | ⊢ ( 𝐹 Struct 𝑋 → ◡ ◡ ( 𝐹 ∖ { ∅ } ) = ( 𝐹 ∖ { ∅ } ) ) |
| 19 | difss | ⊢ ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 | |
| 20 | cnvss | ⊢ ( ( 𝐹 ∖ { ∅ } ) ⊆ 𝐹 → ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ 𝐹 ) | |
| 21 | cnvss | ⊢ ( ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ 𝐹 → ◡ ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ ◡ 𝐹 ) | |
| 22 | 19 20 21 | mp2b | ⊢ ◡ ◡ ( 𝐹 ∖ { ∅ } ) ⊆ ◡ ◡ 𝐹 |
| 23 | 18 22 | eqsstrrdi | ⊢ ( 𝐹 Struct 𝑋 → ( 𝐹 ∖ { ∅ } ) ⊆ ◡ ◡ 𝐹 ) |
| 24 | 13 23 | eqssd | ⊢ ( 𝐹 Struct 𝑋 → ◡ ◡ 𝐹 = ( 𝐹 ∖ { ∅ } ) ) |