This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssxpb | |- ( ( A X. B ) =/= (/) -> ( ( A X. B ) C_ ( C X. D ) <-> ( A C_ C /\ B C_ D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpnz | |- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
|
| 2 | dmxp | |- ( B =/= (/) -> dom ( A X. B ) = A ) |
|
| 3 | 2 | adantl | |- ( ( A =/= (/) /\ B =/= (/) ) -> dom ( A X. B ) = A ) |
| 4 | 1 3 | sylbir | |- ( ( A X. B ) =/= (/) -> dom ( A X. B ) = A ) |
| 5 | 4 | adantr | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> dom ( A X. B ) = A ) |
| 6 | dmss | |- ( ( A X. B ) C_ ( C X. D ) -> dom ( A X. B ) C_ dom ( C X. D ) ) |
|
| 7 | 6 | adantl | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> dom ( A X. B ) C_ dom ( C X. D ) ) |
| 8 | 5 7 | eqsstrrd | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> A C_ dom ( C X. D ) ) |
| 9 | dmxpss | |- dom ( C X. D ) C_ C |
|
| 10 | 8 9 | sstrdi | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> A C_ C ) |
| 11 | rnxp | |- ( A =/= (/) -> ran ( A X. B ) = B ) |
|
| 12 | 11 | adantr | |- ( ( A =/= (/) /\ B =/= (/) ) -> ran ( A X. B ) = B ) |
| 13 | 1 12 | sylbir | |- ( ( A X. B ) =/= (/) -> ran ( A X. B ) = B ) |
| 14 | 13 | adantr | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> ran ( A X. B ) = B ) |
| 15 | rnss | |- ( ( A X. B ) C_ ( C X. D ) -> ran ( A X. B ) C_ ran ( C X. D ) ) |
|
| 16 | 15 | adantl | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> ran ( A X. B ) C_ ran ( C X. D ) ) |
| 17 | 14 16 | eqsstrrd | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> B C_ ran ( C X. D ) ) |
| 18 | rnxpss | |- ran ( C X. D ) C_ D |
|
| 19 | 17 18 | sstrdi | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> B C_ D ) |
| 20 | 10 19 | jca | |- ( ( ( A X. B ) =/= (/) /\ ( A X. B ) C_ ( C X. D ) ) -> ( A C_ C /\ B C_ D ) ) |
| 21 | 20 | ex | |- ( ( A X. B ) =/= (/) -> ( ( A X. B ) C_ ( C X. D ) -> ( A C_ C /\ B C_ D ) ) ) |
| 22 | xpss12 | |- ( ( A C_ C /\ B C_ D ) -> ( A X. B ) C_ ( C X. D ) ) |
|
| 23 | 21 22 | impbid1 | |- ( ( A X. B ) =/= (/) -> ( ( A X. B ) C_ ( C X. D ) <-> ( A C_ C /\ B C_ D ) ) ) |