This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssxpb | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpnz | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) | |
| 2 | dmxp | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
| 4 | 1 3 | sylbir | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
| 6 | dmss | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) → dom ( 𝐴 × 𝐵 ) ⊆ dom ( 𝐶 × 𝐷 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → dom ( 𝐴 × 𝐵 ) ⊆ dom ( 𝐶 × 𝐷 ) ) |
| 8 | 5 7 | eqsstrrd | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → 𝐴 ⊆ dom ( 𝐶 × 𝐷 ) ) |
| 9 | dmxpss | ⊢ dom ( 𝐶 × 𝐷 ) ⊆ 𝐶 | |
| 10 | 8 9 | sstrdi | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → 𝐴 ⊆ 𝐶 ) |
| 11 | rnxp | ⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
| 13 | 1 12 | sylbir | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
| 15 | rnss | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) → ran ( 𝐴 × 𝐵 ) ⊆ ran ( 𝐶 × 𝐷 ) ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → ran ( 𝐴 × 𝐵 ) ⊆ ran ( 𝐶 × 𝐷 ) ) |
| 17 | 14 16 | eqsstrrd | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → 𝐵 ⊆ ran ( 𝐶 × 𝐷 ) ) |
| 18 | rnxpss | ⊢ ran ( 𝐶 × 𝐷 ) ⊆ 𝐷 | |
| 19 | 17 18 | sstrdi | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → 𝐵 ⊆ 𝐷 ) |
| 20 | 10 19 | jca | ⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ) |
| 21 | 20 | ex | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ) ) |
| 22 | xpss12 | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) | |
| 23 | 21 22 | impbid1 | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ) ) |