This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspm.y | |- Y = ( BaseSet ` W ) |
|
| sspm.m | |- M = ( -v ` U ) |
||
| sspm.l | |- L = ( -v ` W ) |
||
| sspm.h | |- H = ( SubSp ` U ) |
||
| Assertion | sspmval | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A L B ) = ( A M B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspm.y | |- Y = ( BaseSet ` W ) |
|
| 2 | sspm.m | |- M = ( -v ` U ) |
|
| 3 | sspm.l | |- L = ( -v ` W ) |
|
| 4 | sspm.h | |- H = ( SubSp ` U ) |
|
| 5 | 4 | sspnv | |- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 8 | 1 7 | nvscl | |- ( ( W e. NrmCVec /\ -u 1 e. CC /\ B e. Y ) -> ( -u 1 ( .sOLD ` W ) B ) e. Y ) |
| 9 | 6 8 | mp3an2 | |- ( ( W e. NrmCVec /\ B e. Y ) -> ( -u 1 ( .sOLD ` W ) B ) e. Y ) |
| 10 | 9 | ex | |- ( W e. NrmCVec -> ( B e. Y -> ( -u 1 ( .sOLD ` W ) B ) e. Y ) ) |
| 11 | 5 10 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> ( B e. Y -> ( -u 1 ( .sOLD ` W ) B ) e. Y ) ) |
| 12 | 11 | anim2d | |- ( ( U e. NrmCVec /\ W e. H ) -> ( ( A e. Y /\ B e. Y ) -> ( A e. Y /\ ( -u 1 ( .sOLD ` W ) B ) e. Y ) ) ) |
| 13 | 12 | imp | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A e. Y /\ ( -u 1 ( .sOLD ` W ) B ) e. Y ) ) |
| 14 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 15 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 16 | 1 14 15 4 | sspgval | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ ( -u 1 ( .sOLD ` W ) B ) e. Y ) ) -> ( A ( +v ` W ) ( -u 1 ( .sOLD ` W ) B ) ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` W ) B ) ) ) |
| 17 | 13 16 | syldan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A ( +v ` W ) ( -u 1 ( .sOLD ` W ) B ) ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` W ) B ) ) ) |
| 18 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 19 | 1 18 7 4 | sspsval | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( -u 1 e. CC /\ B e. Y ) ) -> ( -u 1 ( .sOLD ` W ) B ) = ( -u 1 ( .sOLD ` U ) B ) ) |
| 20 | 6 19 | mpanr1 | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ B e. Y ) -> ( -u 1 ( .sOLD ` W ) B ) = ( -u 1 ( .sOLD ` U ) B ) ) |
| 21 | 20 | adantrl | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( -u 1 ( .sOLD ` W ) B ) = ( -u 1 ( .sOLD ` U ) B ) ) |
| 22 | 21 | oveq2d | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A ( +v ` U ) ( -u 1 ( .sOLD ` W ) B ) ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 23 | 17 22 | eqtrd | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A ( +v ` W ) ( -u 1 ( .sOLD ` W ) B ) ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 24 | 1 15 7 3 | nvmval | |- ( ( W e. NrmCVec /\ A e. Y /\ B e. Y ) -> ( A L B ) = ( A ( +v ` W ) ( -u 1 ( .sOLD ` W ) B ) ) ) |
| 25 | 24 | 3expb | |- ( ( W e. NrmCVec /\ ( A e. Y /\ B e. Y ) ) -> ( A L B ) = ( A ( +v ` W ) ( -u 1 ( .sOLD ` W ) B ) ) ) |
| 26 | 5 25 | sylan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A L B ) = ( A ( +v ` W ) ( -u 1 ( .sOLD ` W ) B ) ) ) |
| 27 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 28 | 27 1 4 | sspba | |- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ ( BaseSet ` U ) ) |
| 29 | 28 | sseld | |- ( ( U e. NrmCVec /\ W e. H ) -> ( A e. Y -> A e. ( BaseSet ` U ) ) ) |
| 30 | 28 | sseld | |- ( ( U e. NrmCVec /\ W e. H ) -> ( B e. Y -> B e. ( BaseSet ` U ) ) ) |
| 31 | 29 30 | anim12d | |- ( ( U e. NrmCVec /\ W e. H ) -> ( ( A e. Y /\ B e. Y ) -> ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) ) |
| 32 | 31 | imp | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) |
| 33 | 27 14 18 2 | nvmval | |- ( ( U e. NrmCVec /\ A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 34 | 33 | 3expb | |- ( ( U e. NrmCVec /\ ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 35 | 34 | adantlr | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 36 | 32 35 | syldan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 37 | 23 26 36 | 3eqtr4d | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A L B ) = ( A M B ) ) |