This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ssp | |- SubSp = ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | css | |- SubSp |
|
| 1 | vu | |- u |
|
| 2 | cnv | |- NrmCVec |
|
| 3 | vw | |- w |
|
| 4 | cpv | |- +v |
|
| 5 | 3 | cv | |- w |
| 6 | 5 4 | cfv | |- ( +v ` w ) |
| 7 | 1 | cv | |- u |
| 8 | 7 4 | cfv | |- ( +v ` u ) |
| 9 | 6 8 | wss | |- ( +v ` w ) C_ ( +v ` u ) |
| 10 | cns | |- .sOLD |
|
| 11 | 5 10 | cfv | |- ( .sOLD ` w ) |
| 12 | 7 10 | cfv | |- ( .sOLD ` u ) |
| 13 | 11 12 | wss | |- ( .sOLD ` w ) C_ ( .sOLD ` u ) |
| 14 | cnmcv | |- normCV |
|
| 15 | 5 14 | cfv | |- ( normCV ` w ) |
| 16 | 7 14 | cfv | |- ( normCV ` u ) |
| 17 | 15 16 | wss | |- ( normCV ` w ) C_ ( normCV ` u ) |
| 18 | 9 13 17 | w3a | |- ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) |
| 19 | 18 3 2 | crab | |- { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } |
| 20 | 1 2 19 | cmpt | |- ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |
| 21 | 0 20 | wceq | |- SubSp = ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |