This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssimaexg | |- ( ( A e. C /\ Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq2 | |- ( y = A -> ( F " y ) = ( F " A ) ) |
|
| 2 | 1 | sseq2d | |- ( y = A -> ( B C_ ( F " y ) <-> B C_ ( F " A ) ) ) |
| 3 | 2 | anbi2d | |- ( y = A -> ( ( Fun F /\ B C_ ( F " y ) ) <-> ( Fun F /\ B C_ ( F " A ) ) ) ) |
| 4 | sseq2 | |- ( y = A -> ( x C_ y <-> x C_ A ) ) |
|
| 5 | 4 | anbi1d | |- ( y = A -> ( ( x C_ y /\ B = ( F " x ) ) <-> ( x C_ A /\ B = ( F " x ) ) ) ) |
| 6 | 5 | exbidv | |- ( y = A -> ( E. x ( x C_ y /\ B = ( F " x ) ) <-> E. x ( x C_ A /\ B = ( F " x ) ) ) ) |
| 7 | 3 6 | imbi12d | |- ( y = A -> ( ( ( Fun F /\ B C_ ( F " y ) ) -> E. x ( x C_ y /\ B = ( F " x ) ) ) <-> ( ( Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) ) ) |
| 8 | vex | |- y e. _V |
|
| 9 | 8 | ssimaex | |- ( ( Fun F /\ B C_ ( F " y ) ) -> E. x ( x C_ y /\ B = ( F " x ) ) ) |
| 10 | 7 9 | vtoclg | |- ( A e. C -> ( ( Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) ) |
| 11 | 10 | 3impib | |- ( ( A e. C /\ Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) |