This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sshjcl | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) e. CH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sshjval | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
|
| 2 | unss | |- ( ( A C_ ~H /\ B C_ ~H ) <-> ( A u. B ) C_ ~H ) |
|
| 3 | ocss | |- ( ( A u. B ) C_ ~H -> ( _|_ ` ( A u. B ) ) C_ ~H ) |
|
| 4 | occl | |- ( ( _|_ ` ( A u. B ) ) C_ ~H -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) e. CH ) |
|
| 5 | 3 4 | syl | |- ( ( A u. B ) C_ ~H -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) e. CH ) |
| 6 | 2 5 | sylbi | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) e. CH ) |
| 7 | 1 6 | eqeltrd | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A vH B ) e. CH ) |