This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domfin4 | |- ( ( A e. Fin4 /\ B ~<_ A ) -> B e. Fin4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domeng | |- ( A e. Fin4 -> ( B ~<_ A <-> E. x ( B ~~ x /\ x C_ A ) ) ) |
|
| 2 | 1 | biimpa | |- ( ( A e. Fin4 /\ B ~<_ A ) -> E. x ( B ~~ x /\ x C_ A ) ) |
| 3 | ensym | |- ( B ~~ x -> x ~~ B ) |
|
| 4 | 3 | ad2antrl | |- ( ( ( A e. Fin4 /\ B ~<_ A ) /\ ( B ~~ x /\ x C_ A ) ) -> x ~~ B ) |
| 5 | ssfin4 | |- ( ( A e. Fin4 /\ x C_ A ) -> x e. Fin4 ) |
|
| 6 | 5 | ad2ant2rl | |- ( ( ( A e. Fin4 /\ B ~<_ A ) /\ ( B ~~ x /\ x C_ A ) ) -> x e. Fin4 ) |
| 7 | fin4en1 | |- ( x ~~ B -> ( x e. Fin4 -> B e. Fin4 ) ) |
|
| 8 | 4 6 7 | sylc | |- ( ( ( A e. Fin4 /\ B ~<_ A ) /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin4 ) |
| 9 | 2 8 | exlimddv | |- ( ( A e. Fin4 /\ B ~<_ A ) -> B e. Fin4 ) |