This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ssc1 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isssc.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| Assertion | ssclem | |- ( ph -> ( H e. _V <-> S e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssc.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| 2 | dmxpid | |- dom ( S X. S ) = S |
|
| 3 | 1 | fndmd | |- ( ph -> dom H = ( S X. S ) ) |
| 4 | 3 | adantr | |- ( ( ph /\ H e. _V ) -> dom H = ( S X. S ) ) |
| 5 | dmexg | |- ( H e. _V -> dom H e. _V ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ H e. _V ) -> dom H e. _V ) |
| 7 | 4 6 | eqeltrrd | |- ( ( ph /\ H e. _V ) -> ( S X. S ) e. _V ) |
| 8 | 7 | dmexd | |- ( ( ph /\ H e. _V ) -> dom ( S X. S ) e. _V ) |
| 9 | 2 8 | eqeltrrid | |- ( ( ph /\ H e. _V ) -> S e. _V ) |
| 10 | sqxpexg | |- ( S e. _V -> ( S X. S ) e. _V ) |
|
| 11 | fnex | |- ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V ) |
|
| 12 | 1 10 11 | syl2an | |- ( ( ph /\ S e. _V ) -> H e. _V ) |
| 13 | 9 12 | impbida | |- ( ph -> ( H e. _V <-> S e. _V ) ) |