This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ssc1 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isssc.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| Assertion | ssclem | ⊢ ( 𝜑 → ( 𝐻 ∈ V ↔ 𝑆 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssc.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 2 | dmxpid | ⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 | |
| 3 | 1 | fndmd | ⊢ ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 5 | dmexg | ⊢ ( 𝐻 ∈ V → dom 𝐻 ∈ V ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → dom 𝐻 ∈ V ) |
| 7 | 4 6 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → ( 𝑆 × 𝑆 ) ∈ V ) |
| 8 | 7 | dmexd | ⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → dom ( 𝑆 × 𝑆 ) ∈ V ) |
| 9 | 2 8 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → 𝑆 ∈ V ) |
| 10 | sqxpexg | ⊢ ( 𝑆 ∈ V → ( 𝑆 × 𝑆 ) ∈ V ) | |
| 11 | fnex | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V ) | |
| 12 | 1 10 11 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ V ) → 𝐻 ∈ V ) |
| 13 | 9 12 | impbida | ⊢ ( 𝜑 → ( 𝐻 ∈ V ↔ 𝑆 ∈ V ) ) |