This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of infinite Cartesian product of Enderton p. 54. Enderton uses a bold "X" with x e. A written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually B represents a class expression containing x free and thus can be thought of as B ( x ) . Normally, x is not free in A , although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ixp | |- X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vx | |- x |
|
| 1 | cA | |- A |
|
| 2 | cB | |- B |
|
| 3 | 0 1 2 | cixp | |- X_ x e. A B |
| 4 | vf | |- f |
|
| 5 | 4 | cv | |- f |
| 6 | 0 | cv | |- x |
| 7 | 6 1 | wcel | |- x e. A |
| 8 | 7 0 | cab | |- { x | x e. A } |
| 9 | 5 8 | wfn | |- f Fn { x | x e. A } |
| 10 | 6 5 | cfv | |- ( f ` x ) |
| 11 | 10 2 | wcel | |- ( f ` x ) e. B |
| 12 | 11 0 1 | wral | |- A. x e. A ( f ` x ) e. B |
| 13 | 9 12 | wa | |- ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) |
| 14 | 13 4 | cab | |- { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } |
| 15 | 3 14 | wceq | |- X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } |