This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srngcnv.i | |- .* = ( *rf ` R ) |
|
| srngf1o.b | |- B = ( Base ` R ) |
||
| Assertion | srngf1o | |- ( R e. *Ring -> .* : B -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcnv.i | |- .* = ( *rf ` R ) |
|
| 2 | srngf1o.b | |- B = ( Base ` R ) |
|
| 3 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 4 | 3 1 | srngrhm | |- ( R e. *Ring -> .* e. ( R RingHom ( oppR ` R ) ) ) |
| 5 | eqid | |- ( Base ` ( oppR ` R ) ) = ( Base ` ( oppR ` R ) ) |
|
| 6 | 2 5 | rhmf | |- ( .* e. ( R RingHom ( oppR ` R ) ) -> .* : B --> ( Base ` ( oppR ` R ) ) ) |
| 7 | ffn | |- ( .* : B --> ( Base ` ( oppR ` R ) ) -> .* Fn B ) |
|
| 8 | 4 6 7 | 3syl | |- ( R e. *Ring -> .* Fn B ) |
| 9 | 1 | srngcnv | |- ( R e. *Ring -> .* = `' .* ) |
| 10 | 9 | fneq1d | |- ( R e. *Ring -> ( .* Fn B <-> `' .* Fn B ) ) |
| 11 | 8 10 | mpbid | |- ( R e. *Ring -> `' .* Fn B ) |
| 12 | dff1o4 | |- ( .* : B -1-1-onto-> B <-> ( .* Fn B /\ `' .* Fn B ) ) |
|
| 13 | 8 11 12 | sylanbrc | |- ( R e. *Ring -> .* : B -1-1-onto-> B ) |