This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) Remove unused hypothesis. (Revised by SN, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulc1.b | |- B = ( Base ` R ) |
|
| gsummulc1.z | |- .0. = ( 0g ` R ) |
||
| gsummulc1.t | |- .x. = ( .r ` R ) |
||
| gsummulc1.r | |- ( ph -> R e. Ring ) |
||
| gsummulc1.a | |- ( ph -> A e. V ) |
||
| gsummulc1.y | |- ( ph -> Y e. B ) |
||
| gsummulc1.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsummulc1.n | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
||
| Assertion | gsummulc1 | |- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulc1.b | |- B = ( Base ` R ) |
|
| 2 | gsummulc1.z | |- .0. = ( 0g ` R ) |
|
| 3 | gsummulc1.t | |- .x. = ( .r ` R ) |
|
| 4 | gsummulc1.r | |- ( ph -> R e. Ring ) |
|
| 5 | gsummulc1.a | |- ( ph -> A e. V ) |
|
| 6 | gsummulc1.y | |- ( ph -> Y e. B ) |
|
| 7 | gsummulc1.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 8 | gsummulc1.n | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
|
| 9 | 4 | ringcmnd | |- ( ph -> R e. CMnd ) |
| 10 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 11 | 4 10 | syl | |- ( ph -> R e. Mnd ) |
| 12 | 1 3 | ringrghm | |- ( ( R e. Ring /\ Y e. B ) -> ( x e. B |-> ( x .x. Y ) ) e. ( R GrpHom R ) ) |
| 13 | 4 6 12 | syl2anc | |- ( ph -> ( x e. B |-> ( x .x. Y ) ) e. ( R GrpHom R ) ) |
| 14 | ghmmhm | |- ( ( x e. B |-> ( x .x. Y ) ) e. ( R GrpHom R ) -> ( x e. B |-> ( x .x. Y ) ) e. ( R MndHom R ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( x e. B |-> ( x .x. Y ) ) e. ( R MndHom R ) ) |
| 16 | oveq1 | |- ( x = X -> ( x .x. Y ) = ( X .x. Y ) ) |
|
| 17 | oveq1 | |- ( x = ( R gsum ( k e. A |-> X ) ) -> ( x .x. Y ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) |
|
| 18 | 1 2 9 11 5 15 7 8 16 17 | gsummhm2 | |- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) |