This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020) (Revised by AV, 7-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmb1mgm1.b | |- B = ( Base ` M ) |
|
| mgmb1mgm1.p | |- .+ = ( +g ` M ) |
||
| Assertion | mgmb1mgm1 | |- ( ( M e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmb1mgm1.b | |- B = ( Base ` M ) |
|
| 2 | mgmb1mgm1.p | |- .+ = ( +g ` M ) |
|
| 3 | eqid | |- ( +f ` M ) = ( +f ` M ) |
|
| 4 | 1 2 3 | plusfeq | |- ( .+ Fn ( B X. B ) -> ( +f ` M ) = .+ ) |
| 5 | 1 3 | mgmplusf | |- ( M e. Mgm -> ( +f ` M ) : ( B X. B ) --> B ) |
| 6 | feq1 | |- ( ( +f ` M ) = .+ -> ( ( +f ` M ) : ( B X. B ) --> B <-> .+ : ( B X. B ) --> B ) ) |
|
| 7 | 5 6 | imbitrid | |- ( ( +f ` M ) = .+ -> ( M e. Mgm -> .+ : ( B X. B ) --> B ) ) |
| 8 | 4 7 | syl | |- ( .+ Fn ( B X. B ) -> ( M e. Mgm -> .+ : ( B X. B ) --> B ) ) |
| 9 | 8 | impcom | |- ( ( M e. Mgm /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) --> B ) |
| 10 | 9 | 3adant2 | |- ( ( M e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) --> B ) |
| 11 | simp2 | |- ( ( M e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> Z e. B ) |
|
| 12 | intopsn | |- ( ( .+ : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( M e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |