This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010) (Revised by AV, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srg1zr.b | |- B = ( Base ` R ) |
|
| srg1zr.p | |- .+ = ( +g ` R ) |
||
| srg1zr.t | |- .* = ( .r ` R ) |
||
| srgen1zr.p | |- Z = ( 0g ` R ) |
||
| Assertion | srgen1zr | |- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> ( B ~~ 1o <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srg1zr.b | |- B = ( Base ` R ) |
|
| 2 | srg1zr.p | |- .+ = ( +g ` R ) |
|
| 3 | srg1zr.t | |- .* = ( .r ` R ) |
|
| 4 | srgen1zr.p | |- Z = ( 0g ` R ) |
|
| 5 | 1 4 | srg0cl | |- ( R e. SRing -> Z e. B ) |
| 6 | 5 | 3ad2ant1 | |- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> Z e. B ) |
| 7 | en1eqsnbi | |- ( Z e. B -> ( B ~~ 1o <-> B = { Z } ) ) |
|
| 8 | 7 | adantl | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B ~~ 1o <-> B = { Z } ) ) |
| 9 | 1 2 3 | srg1zr | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
| 10 | 8 9 | bitrd | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B ~~ 1o <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
| 11 | 6 10 | mpdan | |- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> ( B ~~ 1o <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |