This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sqrtth . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtthlem | |- ( A e. CC -> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtval | |- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 2 | 1 | eqcomd | |- ( A e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
| 3 | sqrtcl | |- ( A e. CC -> ( sqrt ` A ) e. CC ) |
|
| 4 | sqreu | |- ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
|
| 5 | oveq1 | |- ( x = ( sqrt ` A ) -> ( x ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = ( sqrt ` A ) -> ( ( x ^ 2 ) = A <-> ( ( sqrt ` A ) ^ 2 ) = A ) ) |
| 7 | fveq2 | |- ( x = ( sqrt ` A ) -> ( Re ` x ) = ( Re ` ( sqrt ` A ) ) ) |
|
| 8 | 7 | breq2d | |- ( x = ( sqrt ` A ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( sqrt ` A ) ) ) ) |
| 9 | oveq2 | |- ( x = ( sqrt ` A ) -> ( _i x. x ) = ( _i x. ( sqrt ` A ) ) ) |
|
| 10 | neleq1 | |- ( ( _i x. x ) = ( _i x. ( sqrt ` A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
|
| 11 | 9 10 | syl | |- ( x = ( sqrt ` A ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
| 12 | 6 8 11 | 3anbi123d | |- ( x = ( sqrt ` A ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) ) |
| 13 | 12 | riota2 | |- ( ( ( sqrt ` A ) e. CC /\ E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
| 14 | 3 4 13 | syl2anc | |- ( A e. CC -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
| 15 | 2 14 | mpbird | |- ( A e. CC -> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |