This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sqrtth . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtthlem | ⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtval | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 2 | 1 | eqcomd | ⊢ ( 𝐴 ∈ ℂ → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) |
| 3 | sqrtcl | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | sqreu | ⊢ ( 𝐴 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) ) |
| 7 | fveq2 | ⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) | |
| 8 | 7 | breq2d | ⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) ) | |
| 10 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |
| 12 | 6 8 11 | 3anbi123d | ⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) ) |
| 13 | 12 | riota2 | ⊢ ( ( ( √ ‘ 𝐴 ) ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) ) |
| 14 | 3 4 13 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) ) |
| 15 | 2 14 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |