This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtdiv | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 2 | 1 | adantlr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 3 | elrp | |- ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) |
|
| 4 | divge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) ) |
|
| 5 | 3 4 | sylan2b | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> 0 <_ ( A / B ) ) |
| 6 | resqrtcl | |- ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) -> ( sqrt ` ( A / B ) ) e. RR ) |
|
| 7 | 2 5 6 | syl2anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) e. RR ) |
| 8 | 7 | recnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) e. CC ) |
| 9 | rpsqrtcl | |- ( B e. RR+ -> ( sqrt ` B ) e. RR+ ) |
|
| 10 | 9 | adantl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` B ) e. RR+ ) |
| 11 | 10 | rpcnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` B ) e. CC ) |
| 12 | 10 | rpne0d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` B ) =/= 0 ) |
| 13 | 8 11 12 | divcan4d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) / ( sqrt ` B ) ) = ( sqrt ` ( A / B ) ) ) |
| 14 | rprege0 | |- ( B e. RR+ -> ( B e. RR /\ 0 <_ B ) ) |
|
| 15 | 14 | adantl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( B e. RR /\ 0 <_ B ) ) |
| 16 | sqrtmul | |- ( ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( sqrt ` ( ( A / B ) x. B ) ) = ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) ) |
|
| 17 | 2 5 15 16 | syl21anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( ( A / B ) x. B ) ) = ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) ) |
| 18 | simpll | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> A e. RR ) |
|
| 19 | 18 | recnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> A e. CC ) |
| 20 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 21 | 20 | adantl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> B e. CC ) |
| 22 | rpne0 | |- ( B e. RR+ -> B =/= 0 ) |
|
| 23 | 22 | adantl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> B =/= 0 ) |
| 24 | 19 21 23 | divcan1d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( A / B ) x. B ) = A ) |
| 25 | 24 | fveq2d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( ( A / B ) x. B ) ) = ( sqrt ` A ) ) |
| 26 | 17 25 | eqtr3d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) = ( sqrt ` A ) ) |
| 27 | 26 | oveq1d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( ( ( sqrt ` ( A / B ) ) x. ( sqrt ` B ) ) / ( sqrt ` B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |
| 28 | 13 27 | eqtr3d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqrt ` ( A / B ) ) = ( ( sqrt ` A ) / ( sqrt ` B ) ) ) |