This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtdiv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 3 | elrp | ⊢ ( 𝐵 ∈ ℝ+ ↔ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 4 | divge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) | |
| 5 | 3 4 | sylan2b | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 6 | resqrtcl | ⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 9 | rpsqrtcl | ⊢ ( 𝐵 ∈ ℝ+ → ( √ ‘ 𝐵 ) ∈ ℝ+ ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ 𝐵 ) ∈ ℝ+ ) |
| 11 | 10 | rpcnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ 𝐵 ) ∈ ℂ ) |
| 12 | 10 | rpne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ 𝐵 ) ≠ 0 ) |
| 13 | 8 11 12 | divcan4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) = ( √ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 14 | rprege0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 16 | sqrtmul | ⊢ ( ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) ) | |
| 17 | 2 5 15 16 | syl21anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) ) |
| 18 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 19 | 18 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 20 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 22 | rpne0 | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
| 24 | 19 21 23 | divcan1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 25 | 24 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( √ ‘ 𝐴 ) ) |
| 26 | 17 25 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) = ( √ ‘ 𝐴 ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( ( ( √ ‘ ( 𝐴 / 𝐵 ) ) · ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) |
| 28 | 13 27 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → ( √ ‘ ( 𝐴 / 𝐵 ) ) = ( ( √ ‘ 𝐴 ) / ( √ ‘ 𝐵 ) ) ) |