This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnj | |- ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A +H ( span ` { B } ) ) = ( if ( A e. CH , A , ~H ) +H ( span ` { B } ) ) ) |
|
| 2 | oveq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A vH ( span ` { B } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { B } ) ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) <-> ( if ( A e. CH , A , ~H ) +H ( span ` { B } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { B } ) ) ) ) |
| 4 | sneq | |- ( B = if ( B e. ~H , B , 0h ) -> { B } = { if ( B e. ~H , B , 0h ) } ) |
|
| 5 | 4 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( span ` { B } ) = ( span ` { if ( B e. ~H , B , 0h ) } ) ) |
| 6 | 5 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CH , A , ~H ) +H ( span ` { B } ) ) = ( if ( A e. CH , A , ~H ) +H ( span ` { if ( B e. ~H , B , 0h ) } ) ) ) |
| 7 | 5 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CH , A , ~H ) vH ( span ` { B } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { if ( B e. ~H , B , 0h ) } ) ) ) |
| 8 | 6 7 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. CH , A , ~H ) +H ( span ` { B } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { B } ) ) <-> ( if ( A e. CH , A , ~H ) +H ( span ` { if ( B e. ~H , B , 0h ) } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { if ( B e. ~H , B , 0h ) } ) ) ) ) |
| 9 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 10 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 11 | 9 10 | spansnji | |- ( if ( A e. CH , A , ~H ) +H ( span ` { if ( B e. ~H , B , 0h ) } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { if ( B e. ~H , B , 0h ) } ) ) |
| 12 | 3 8 11 | dedth2h | |- ( ( A e. CH /\ B e. ~H ) -> ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) ) |