This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that (/) Or { B } ). (Contributed by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sossfld | |- ( ( R Or A /\ B e. A ) -> ( A \ { B } ) C_ ( dom R u. ran R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( x e. ( A \ { B } ) <-> ( x e. A /\ x =/= B ) ) |
|
| 2 | sotrieq | |- ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( x = B <-> -. ( x R B \/ B R x ) ) ) |
|
| 3 | 2 | necon2abid | |- ( ( R Or A /\ ( x e. A /\ B e. A ) ) -> ( ( x R B \/ B R x ) <-> x =/= B ) ) |
| 4 | 3 | anass1rs | |- ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) <-> x =/= B ) ) |
| 5 | breldmg | |- ( ( x e. A /\ B e. A /\ x R B ) -> x e. dom R ) |
|
| 6 | 5 | 3expia | |- ( ( x e. A /\ B e. A ) -> ( x R B -> x e. dom R ) ) |
| 7 | 6 | ancoms | |- ( ( B e. A /\ x e. A ) -> ( x R B -> x e. dom R ) ) |
| 8 | brelrng | |- ( ( B e. A /\ x e. A /\ B R x ) -> x e. ran R ) |
|
| 9 | 8 | 3expia | |- ( ( B e. A /\ x e. A ) -> ( B R x -> x e. ran R ) ) |
| 10 | 7 9 | orim12d | |- ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> ( x e. dom R \/ x e. ran R ) ) ) |
| 11 | elun | |- ( x e. ( dom R u. ran R ) <-> ( x e. dom R \/ x e. ran R ) ) |
|
| 12 | 10 11 | imbitrrdi | |- ( ( B e. A /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) ) |
| 13 | 12 | adantll | |- ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( ( x R B \/ B R x ) -> x e. ( dom R u. ran R ) ) ) |
| 14 | 4 13 | sylbird | |- ( ( ( R Or A /\ B e. A ) /\ x e. A ) -> ( x =/= B -> x e. ( dom R u. ran R ) ) ) |
| 15 | 14 | expimpd | |- ( ( R Or A /\ B e. A ) -> ( ( x e. A /\ x =/= B ) -> x e. ( dom R u. ran R ) ) ) |
| 16 | 1 15 | biimtrid | |- ( ( R Or A /\ B e. A ) -> ( x e. ( A \ { B } ) -> x e. ( dom R u. ran R ) ) ) |
| 17 | 16 | ssrdv | |- ( ( R Or A /\ B e. A ) -> ( A \ { B } ) C_ ( dom R u. ran R ) ) |