This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sofld | |- ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> A = ( dom R u. ran R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | |- Rel ( A X. A ) |
|
| 2 | relss | |- ( R C_ ( A X. A ) -> ( Rel ( A X. A ) -> Rel R ) ) |
|
| 3 | 1 2 | mpi | |- ( R C_ ( A X. A ) -> Rel R ) |
| 4 | 3 | ad2antlr | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> Rel R ) |
| 5 | df-br | |- ( x R y <-> <. x , y >. e. R ) |
|
| 6 | ssun1 | |- A C_ ( A u. { x } ) |
|
| 7 | undif1 | |- ( ( A \ { x } ) u. { x } ) = ( A u. { x } ) |
|
| 8 | 6 7 | sseqtrri | |- A C_ ( ( A \ { x } ) u. { x } ) |
| 9 | simpll | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> R Or A ) |
|
| 10 | dmss | |- ( R C_ ( A X. A ) -> dom R C_ dom ( A X. A ) ) |
|
| 11 | dmxpid | |- dom ( A X. A ) = A |
|
| 12 | 10 11 | sseqtrdi | |- ( R C_ ( A X. A ) -> dom R C_ A ) |
| 13 | 12 | ad2antlr | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> dom R C_ A ) |
| 14 | 3 | ad2antlr | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> Rel R ) |
| 15 | releldm | |- ( ( Rel R /\ x R y ) -> x e. dom R ) |
|
| 16 | 14 15 | sylancom | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. dom R ) |
| 17 | 13 16 | sseldd | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. A ) |
| 18 | sossfld | |- ( ( R Or A /\ x e. A ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) |
|
| 19 | 9 17 18 | syl2anc | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> ( A \ { x } ) C_ ( dom R u. ran R ) ) |
| 20 | ssun1 | |- dom R C_ ( dom R u. ran R ) |
|
| 21 | 20 16 | sselid | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> x e. ( dom R u. ran R ) ) |
| 22 | 21 | snssd | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> { x } C_ ( dom R u. ran R ) ) |
| 23 | 19 22 | unssd | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> ( ( A \ { x } ) u. { x } ) C_ ( dom R u. ran R ) ) |
| 24 | 8 23 | sstrid | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ x R y ) -> A C_ ( dom R u. ran R ) ) |
| 25 | 24 | ex | |- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( x R y -> A C_ ( dom R u. ran R ) ) ) |
| 26 | 5 25 | biimtrrid | |- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( <. x , y >. e. R -> A C_ ( dom R u. ran R ) ) ) |
| 27 | 26 | con3dimp | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> -. <. x , y >. e. R ) |
| 28 | 27 | pm2.21d | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> ( <. x , y >. e. R -> <. x , y >. e. (/) ) ) |
| 29 | 4 28 | relssdv | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> R C_ (/) ) |
| 30 | ss0 | |- ( R C_ (/) -> R = (/) ) |
|
| 31 | 29 30 | syl | |- ( ( ( R Or A /\ R C_ ( A X. A ) ) /\ -. A C_ ( dom R u. ran R ) ) -> R = (/) ) |
| 32 | 31 | ex | |- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( -. A C_ ( dom R u. ran R ) -> R = (/) ) ) |
| 33 | 32 | necon1ad | |- ( ( R Or A /\ R C_ ( A X. A ) ) -> ( R =/= (/) -> A C_ ( dom R u. ran R ) ) ) |
| 34 | 33 | 3impia | |- ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> A C_ ( dom R u. ran R ) ) |
| 35 | rnss | |- ( R C_ ( A X. A ) -> ran R C_ ran ( A X. A ) ) |
|
| 36 | rnxpid | |- ran ( A X. A ) = A |
|
| 37 | 35 36 | sseqtrdi | |- ( R C_ ( A X. A ) -> ran R C_ A ) |
| 38 | 12 37 | unssd | |- ( R C_ ( A X. A ) -> ( dom R u. ran R ) C_ A ) |
| 39 | 38 | 3ad2ant2 | |- ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> ( dom R u. ran R ) C_ A ) |
| 40 | 34 39 | eqssd | |- ( ( R Or A /\ R C_ ( A X. A ) /\ R =/= (/) ) -> A = ( dom R u. ran R ) ) |