This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brelrng | |- ( ( A e. F /\ B e. G /\ A C B ) -> B e. ran C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg | |- ( ( B e. G /\ A e. F ) -> ( B `' C A <-> A C B ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. F /\ B e. G ) -> ( B `' C A <-> A C B ) ) |
| 3 | 2 | biimp3ar | |- ( ( A e. F /\ B e. G /\ A C B ) -> B `' C A ) |
| 4 | breldmg | |- ( ( B e. G /\ A e. F /\ B `' C A ) -> B e. dom `' C ) |
|
| 5 | 4 | 3com12 | |- ( ( A e. F /\ B e. G /\ B `' C A ) -> B e. dom `' C ) |
| 6 | 3 5 | syld3an3 | |- ( ( A e. F /\ B e. G /\ A C B ) -> B e. dom `' C ) |
| 7 | df-rn | |- ran C = dom `' C |
|
| 8 | 6 7 | eleqtrrdi | |- ( ( A e. F /\ B e. G /\ A C B ) -> B e. ran C ) |